Collaborative Research: Plasmonic Nanoantenna Electrode Arrays (NEAs) for Massively Multiplexed Identification of Stem-Cell Derived Cardiac Cells in Regenerative Therapies
合作研究:等离激元纳米天线电极阵列(NEA)用于再生治疗中干细胞来源的心肌细胞的大规模多重识别
基本信息
- 批准号:1611083
- 负责人:
- 金额:$ 28.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Collaborative Research: Plasmonic Nanoantenna Electrode Arrays (NEAs) for Massively Multiplexed Identification of Stem-Cell Derived Cardiac Cells in Regenerative TherapiesNontechnical Abstract: Heart diseases are one of the leading causes of death in the US. Stem cellbased regenerative therapies are among the most promising treatment techniques. However, cells derived from stem cells are not uniform; only some percentage of the initial cell culture develops into the cell type of interest. Undifferentiated cells that remain within the cell population could lead to tumor.Furthermore, immature cells or cells with over-sensitivity would hinder the synchronous beating of the heart muscle cells, which can cause heart failure. Current methods to examine the purity of stem-cell based heart cells depend on cell surface markers, which is not a precise way to determine cellular functionality. This proposal offers a high-throughput screening technique to directly measure thefunctionality of differentiated heart muscle cells through their specific membrane potential changes during contraction. The proposed molecular-nanoplasmonic label-free voltage sensors will allow screening of single cell membrane potentials within confluent cell cultures and provide an accurate method for selecting and purifying functional cells from a mixed group. Development of such a precise technique would present a remarkable technological leap in stem cell-based research and strategies for cardiac regeneration. In addition to scientific and technological advancements, this research program will provide educational opportunities to underrepresented groups and minorities, and enhance involvement of undergraduate and graduate students in nanoscience and technology.Technical Abstract: The objective of this research proposal is to introduce ultrasensitive molecularplasmonic voltage probes for non-invasive, real-time and subcellular precision mapping of cardiac cell membrane potentials. These electrophysiological nanoprobes could have significant impact in differentiation of stem cell derived cardiac cells through massively parallel and precise mapping of singlecell membrane potentials. Given the lack of experimental electrophysiological techniques with high spatial and temporal precision capabilities, this research program could significantly contribute to cardiac cell studies and regenerative therapies. The specific objectives of this research program are:(1) to develop molecular-plasmonic voltage sensors by using electromagnetic simulations, high throughput fabrication and chemical synthesis techniques, and optical/electrical characterization.(2) to realize real time and label free detection of tiny potential variations at diffraction limited spot sizes with microsecond temporal resolutions and high signal-to-noise ratios.(3) to achieve non-destructive imaging of single cells in large cell populations and distinguish individual cell characteristics in -cultured/multiple cell state.The proposed research program involves theoretical understanding and numerical design of molecularplasmonic devices. Devices merging nano/micro-meter components will be fabricated using state of lithography and synthesis techniques. Fabricated devices will be tested using excitable cell populations with varying densities and cell compositions. Furthermore, changes in the membrane potentials ofcardiomyocytes that are being differentiated from hiPSC will be measured in real-time.
合作研究:等离子体纳米天线电极阵列(NEAs)用于再生治疗中干细胞衍生的心脏细胞的大规模多重鉴定非技术摘要:心脏病是美国死亡的主要原因之一。基于干细胞的再生疗法是最有前途的治疗技术之一。然而,从干细胞衍生的细胞是不均匀的;只有一些百分比的初始细胞培养物发育成感兴趣的细胞类型。未分化的细胞留在细胞群中可能导致肿瘤,而且,不成熟的细胞或过度敏感的细胞会阻碍心肌细胞的同步跳动,从而导致心力衰竭。目前检测基于干细胞的心脏细胞纯度的方法依赖于细胞表面标记物,这不是确定细胞功能的精确方法。这一提议提供了一种高通量筛选技术,通过收缩过程中特定的膜电位变化直接测量分化的心肌细胞的功能。所提出的分子-纳米等离子体无标记电压传感器将允许在融合细胞培养物内筛选单细胞膜电位,并提供用于从混合组中选择和纯化功能细胞的准确方法。这种精确技术的发展将为基于干细胞的研究和心脏再生策略带来显著的技术飞跃。除了科学和技术的进步,这项研究计划将提供教育机会,代表性不足的群体和少数民族,并提高本科生和研究生在nanoscience and technology.Technical Abstract的参与:这项研究的目的是引入超灵敏的molecularplasmonic电压探头的非侵入性,实时和亚细胞的心脏细胞膜电位的精确映射。这些电生理学纳米探针可以通过大规模并行和精确绘制心肌细胞膜电位来对干细胞衍生的心肌细胞的分化产生显著影响。由于缺乏具有高空间和时间精度能力的实验电生理技术,该研究计划可能会对心脏细胞研究和再生疗法做出重大贡献。本研究计划的具体目标是:(1)通过电磁模拟,高通量制造和化学合成技术以及光学/电学表征开发分子等离子体电压传感器。(2)以微秒时间分辨率和高信噪比实现衍射极限光斑尺寸下微小电位变化的真实的实时和无标记检测。(3)实现大细胞群中单个细胞的无损成像,区分培养/多细胞状态下的单个细胞特征。拟议的研究计划涉及对分子等离子体器件的理论理解和数值设计。融合纳米/微米组件的器件将使用光刻和合成技术的状态来制造。将使用具有不同密度和细胞组成的可兴奋细胞群来测试制造的设备。此外,将实时测量从hiPSC分化的心肌细胞的膜电位的变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pinar Zorlutuna其他文献
Immune System Effects on Breast Cancer
- DOI:
10.1007/s12195-021-00679-8 - 发表时间:
2021-06-03 - 期刊:
- 影响因子:5.000
- 作者:
Jensen N. Amens;Gökhan Bahçecioglu;Pinar Zorlutuna - 通讯作者:
Pinar Zorlutuna
A novel construct as a cell carrier for tissue engineering
一种作为组织工程细胞载体的新型结构
- DOI:
10.1163/156856208783720976 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Pinar Zorlutuna;A. Tezcaner;V. Hasırcı - 通讯作者:
V. Hasırcı
Electrically conductive 3D printed Tisub3/subCsub2/subTemsubx/sub/em MXene-PEG composite constructs for cardiac tissue engineering
- DOI:
10.1016/j.actbio.2020.12.033 - 发表时间:
2022-02-01 - 期刊:
- 影响因子:9.600
- 作者:
Gozde Basara;Mortaza Saeidi-Javash;Xiang Ren;Gokhan Bahcecioglu;Brian C. Wyatt;Babak Anasori;Yanliang Zhang;Pinar Zorlutuna - 通讯作者:
Pinar Zorlutuna
Pinar Zorlutuna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pinar Zorlutuna', 18)}}的其他基金
Tissue Engineered Model of Aging to Study the Role of Cellular Interdependence in Failing Tissues
衰老组织工程模型研究细胞相互依赖性在组织衰竭中的作用
- 批准号:
1805157 - 财政年份:2018
- 资助金额:
$ 28.75万 - 项目类别:
Standard Grant
SemiSynBio: Cardiac Muscle-Cell-Based Coupled Oscillator Networks for Collective Computing
SemiSynBio:用于集体计算的基于心肌细胞的耦合振荡器网络
- 批准号:
1807551 - 财政年份:2018
- 资助金额:
$ 28.75万 - 项目类别:
Continuing Grant
CAREER:Tissue-engineering an aging heart: The effect of aged cell microenvironment in myocardial infarction
职业:衰老心脏的组织工程:衰老细胞微环境对心肌梗死的影响
- 批准号:
1651385 - 财政年份:2017
- 资助金额:
$ 28.75万 - 项目类别:
Standard Grant
Fundamental Investigations of Muscle Cell Interactions for Engineering 'Living Diodes'
肌肉细胞相互作用的基础研究用于工程“活二极管”
- 批准号:
1403546 - 财政年份:2014
- 资助金额:
$ 28.75万 - 项目类别:
Standard Grant
Fundamental Investigations of Muscle Cell Interactions for Engineering 'Living Diodes'
肌肉细胞相互作用的基础研究用于工程“活二极管”
- 批准号:
1530884 - 财政年份:2014
- 资助金额:
$ 28.75万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
COLLABORATIVE RESEARCH: DMREF: Designing Plasmonic Nanoparticle Assemblies For Active Nanoscale Temperature Control By Exploiting Near- And Far-Field Coupling
合作研究:DMREF:通过利用近场和远场耦合设计用于主动纳米级温度控制的等离激元纳米颗粒组件
- 批准号:
2118389 - 财政年份:2021
- 资助金额:
$ 28.75万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: DMREF: Designing Plasmonic Nanoparticle Assemblies For Active Nanoscale Temperature Control By Exploiting Near- And Far-Field Coupling
合作研究:DMREF:通过利用近场和远场耦合设计用于主动纳米级温度控制的等离激元纳米颗粒组件
- 批准号:
2118420 - 财政年份:2021
- 资助金额:
$ 28.75万 - 项目类别:
Standard Grant
Collaborative Research: Visible-Light-Augmented Reverse Water Gas Shift Reaction on Hybrid Plasmonic Photocatalysts
合作研究:混合等离子体光催化剂上的可见光增强反向水煤气变换反应
- 批准号:
2102239 - 财政年份:2021
- 资助金额:
$ 28.75万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: DMREF: Designing Plasmonic Nanoparticle Assemblies For Active Nanoscale Temperature Control By Exploiting Near- And Far-Field Coupling
合作研究:DMREF:通过利用近场和远场耦合设计用于主动纳米级温度控制的等离激元纳米颗粒组件
- 批准号:
2118333 - 财政年份:2021
- 资助金额:
$ 28.75万 - 项目类别:
Standard Grant
Collaborative Research: Visible-Light-Augmented Reverse Water Gas Shift Reaction on Hybrid Plasmonic Photocatalysts
合作研究:混合等离子体光催化剂上的可见光增强反向水煤气变换反应
- 批准号:
2102238 - 财政年份:2021
- 资助金额:
$ 28.75万 - 项目类别:
Standard Grant
Collaborative Research: A Stacked Plasmonic Nanopore for Tether-Free Stretching and Label-Free Sensing of hSTf Dynamics and Complex Formation at Ultra-Low Concentrations
合作研究:堆叠式等离子体纳米孔,用于超低浓度下 hSTf 动力学和复杂形成的无绳拉伸和无标记传感
- 批准号:
2022374 - 财政年份:2020
- 资助金额:
$ 28.75万 - 项目类别:
Standard Grant
Collaborative Research: A Stacked Plasmonic Nanopore for Tether-Free Stretching and Label-Free Sensing of hSTf Dynamics and Complex Formation at Ultra-Low Concentrations
合作研究:堆叠式等离子体纳米孔,用于超低浓度下 hSTf 动力学和复杂形成的无绳拉伸和无标记传感
- 批准号:
2022398 - 财政年份:2020
- 资助金额:
$ 28.75万 - 项目类别:
Standard Grant
Collaborative Research: Wafer-Scale, Defect-Free Assembly of Three-Dimensional Plasmonic Nanoarchitectures
合作研究:晶圆级、三维等离子体纳米结构的无缺陷组装
- 批准号:
1928788 - 财政年份:2019
- 资助金额:
$ 28.75万 - 项目类别:
Standard Grant
Collaborative Research: Wafer-Scale, Defect-Free Assembly of Three-Dimensional Plasmonic Nanoarchitectures
合作研究:晶圆级、三维等离子体纳米结构的无缺陷组装
- 批准号:
1928784 - 财政年份:2019
- 资助金额:
$ 28.75万 - 项目类别:
Standard Grant
Collaborative Research: Plasmonic lasing with two-dimensional heterostructures in the intrinsic regime
合作研究:本征状态下具有二维异质结构的等离激元激光
- 批准号:
1809361 - 财政年份:2018
- 资助金额:
$ 28.75万 - 项目类别:
Standard Grant