Collaborative Research: Directing Charge Transport in Hierarchical Molecular Assemblies
合作研究:指导分层分子组装中的电荷传输
基本信息
- 批准号:1611119
- 负责人:
- 金额:$ 34.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project funded by the Macromolecular, Supramolecular and Nanochemistry program of the Chemistry Division, Professor James Batteas of the Texas A & M University and Professor Charles Drain of Hunter College of the City University of New York study the molecular assembly and electron transport properties of molecules that might help in electronic device miniaturization. Moore's Law, which has held for the last four decades, states that the density of transistors on an electronic device "chip" will double approximately every two years, making electronic devices smaller, faster and more powerful. A pressing question is whether Moore's Law will continue into the future or has it reached its fundamental limits. Professors Batteas and Drain study metal-organic complexes known as porphyrinoids, found in nature as the active component of hemoglobin and chlorophyll, to aid in these developments. They design, synthesize and evaluate the conductive properties of porphyrinoids assembled into specific structures on surfaces. Using imaging techniques such as atomic force microscopy (AFM) and scanning tunneling microscopy (STM), the team can place individual molecules into precise arrangements on surfaces and measure not only their assembled structure at the molecular level but also how the structure controls the movement of electrons through the molecules. This research has broader impacts in science and technology, and enables the rational design of potential molecular electronic devices, including enhanced photovoltaics, chemical sensors and molecular electronics. The team also trains students, for broader impacts in education, in fundamental materials chemistry, preparing them for the 21st century high technology jobs sector. Professor Batteas and Professor Drain study how to design, synthesize and evaluate the conductive properties of porphyrinoids assembled on metal surfaces with an eye toward the implementation of hybrid molecular-based devices for photonics applications, including enhanced photovoltaics, chemical sensors and molecular based electronics. The electroactive properties and self-assembly of robust porphyrinoids can be readily tuned through chemical synthesis using simple high yield reactions that facilitate commercial viability, making them attractive targets to be integrated as active components in electronic devices. In this project porphryinoids are assembled on Au surfaces in precise architectures via a combination of nanolithography and directed click-chemical reactions to create nanoscopic assemblies of less than 10 nm in lateral dimension. Characterization methods (time resolved florescence, UV-visible absorption, STM and AFM) are applied to understand how local molecular interactions influence electron transport properties in small molecule assemblies, how spatial confinement of molecules on a surface influence their resulting assembly process and the structures that can be formed, and how the assembled architectures control electron transport. Broader impacts of the research result in an improved fundamental understanding of the assembly and electron transport properties of the porphryiods, with potential to influence molecular electronic device and solar light harvesting applications. Broader impacts through education and outreach incorporate aspects of the work, including atomic scale imaging, nanolithography, molecular self-assembly and nanoscale electronics, into demonstrations for elementary school students as part of a weeklong summer camp on Nanotechnology (at Texas A&M University), and into the undergraduate and graduate classrooms at Texas A&M University and CUNY Hunter College.
在这个由化学系的大分子、超分子和纳米化学项目资助的项目中,德克萨斯A M大学的James Batteas教授和纽约亨特学院的Charles Drain教授研究了可能有助于电子设备小型化的分子组装和分子的电子传输特性。 摩尔定律在过去的四十年里一直成立,它指出电子设备“芯片”上的晶体管密度大约每两年翻一番,使电子设备更小、更快、更强大。 一个紧迫的问题是,摩尔定律是否会持续到未来,或者已经达到了它的基本极限。 Batteas和Drain教授研究了被称为卟啉的金属有机络合物,在自然界中作为血红蛋白和叶绿素的活性成分被发现,以帮助这些发展。 他们设计,合成和评估组装成表面特定结构的卟啉类化合物的导电性能。使用原子力显微镜(AFM)和扫描隧道显微镜(STM)等成像技术,该团队可以将单个分子置于表面上的精确排列中,不仅可以测量分子水平上的组装结构,还可以测量结构如何控制电子通过分子的运动。 这项研究在科学和技术方面具有更广泛的影响,并使潜在的分子电子器件的合理设计成为可能,包括增强型光电子学,化学传感器和分子电子学。该团队还培训学生,在教育中产生更广泛的影响,在基础材料化学,为21世纪世纪高科技就业部门做好准备。Batteas教授和Drain教授研究如何设计、合成和评估组装在金属表面上的类卟啉的导电性能,着眼于实现用于光子学应用的混合分子基设备,包括增强型光伏电池、化学传感器和分子基电子学。稳健卟啉类化合物的电活性性质和自组装可以通过化学合成容易地调整,使用简单的高产率反应,促进商业可行性,使它们成为有吸引力的目标,作为电子器件中的活性组分。在这个项目中,porphryinoids组装在Au表面上的精确架构,通过纳米光刻和定向点击化学反应的组合,以创建横向尺寸小于10 nm的纳米级组件。 表征方法(时间分辨荧光,紫外-可见吸收,STM和AFM)被应用于了解如何局部分子相互作用影响小分子组件中的电子传输特性,如何在表面上的分子空间限制影响其所得的组装过程和可以形成的结构,以及组装的架构如何控制电子传输。 研究的更广泛影响导致对卟啉的组装和电子传输特性的基本理解得到改善,有可能影响分子电子器件和太阳能集光应用。 更广泛的影响,通过教育和推广纳入工作的各个方面,包括原子尺度成像,纳米光刻,分子自组装和纳米级电子,到示范小学生的一部分,为期一周的夏令营纳米技术(在得克萨斯州A M大学),并进入本科生和研究生课堂在得克萨斯州A M大学和纽约市立大学亨特学院。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Batteas其他文献
James Batteas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Batteas', 18)}}的其他基金
NSF Center for the Mechanical Control of Chemistry
NSF 化学机械控制中心
- 批准号:
2303044 - 财政年份:2023
- 资助金额:
$ 34.5万 - 项目类别:
Cooperative Agreement
CCI Phase 1: NSF Center for the Mechanical Control of Chemistry
CCI 第一阶段:NSF 化学机械控制中心
- 批准号:
2023644 - 财政年份:2020
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Collaborative Research: Experiments and Simulations at the Nexus of Geophysics, Chemistry, Materials Science and Mechanics to Determine the Physical Basis for Rate-State Friction
合作研究:结合地球物理学、化学、材料科学和力学来确定速率状态摩擦的物理基础的实验和模拟
- 批准号:
1951467 - 财政年份:2020
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Collaborative Research: Studies of Charge Transport in Designed Nanoscale Molecular Assemblies
合作研究:设计纳米级分子组装体中电荷传输的研究
- 批准号:
2003840 - 财政年份:2020
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Tuning the Molecular Arrangement and Charge Storage Properties of Textured Graphene-Ionic Liquid Interface
合作研究:理解和调节织构化石墨烯-离子液体界面的分子排列和电荷存储特性
- 批准号:
1904887 - 财政年份:2019
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Studies on the Use of Atomically Thin Films for Controlling Friction and Adhesion at Interfaces
使用原子薄膜控制界面摩擦和粘附的研究
- 批准号:
1436192 - 财政年份:2014
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Collaborative Research: Charge Transport in Confined Molecular Assemblies
合作研究:限域分子组装体中的电荷传输
- 批准号:
1213802 - 财政年份:2012
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Studies of Friction and Adhesion in Nanoscale Asperity-Asperity Contacts
纳米级粗糙体-粗糙体接触中的摩擦和粘附研究
- 批准号:
1131361 - 财政年份:2011
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Collaborative Research: Molecular Conduction in Confined Molecular Assemblies
合作研究:受限分子组装体中的分子传导
- 批准号:
0848786 - 财政年份:2009
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Probing the Role of Surface Defects and Disorder on the Tribology of Nanoscopic Contacts
探讨表面缺陷和无序对纳米接触摩擦学的作用
- 批准号:
0825977 - 财政年份:2008
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
- 批准号:
502555 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
- 批准号:
DE240100161 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
- 批准号:
2902365 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
- 批准号:
EP/Y031962/1 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
- 批准号:
EP/Y033124/1 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
- 批准号:
EP/Y033183/1 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
- 批准号:
NE/Y005457/1 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Training Grant