Collaborative Research: Studies of Charge Transport in Designed Nanoscale Molecular Assemblies

合作研究:设计纳米级分子组装体中电荷传输的研究

基本信息

  • 批准号:
    2003840
  • 负责人:
  • 金额:
    $ 34.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Professors James D. Batteas of Texas A&M University and Adam B. Braunschweig of the Research Foundation CUNY - Advanced Science Research Center are supported by the Macromolecular, Supramolecular, and Nanochemistry Program in the Division of Chemistry to develop an understanding of methods whereby molecular assemblies can be built on extended and nanostructured metal surfaces to exhibit predictable properties. Molecular assemblies built with precise nanoscale geometries on surfaces are designed to trap and transport charge and energy in directable ways. Advanced imaging and optical techniques are used to examine the resulting structures and to determine how the structures control the movement of electrons through the molecules or how they exchange energy with the surfaces on which they are deposited. The project advances the development improved light harvesting and solar energy conversion, portable chemical sensing, and quantum computing. In the course of this research, graduate, undergraduate and K-12 students from diverse backgrounds are prepared to join the advanced electronics workforce. They are trained in cross-cutting research at the intersection of chemical synthesis, materials chemistry, and surface science in a coordinated collaborative environment between the laboratories of the principle investigators. Designing molecular assemblies that can trap and transport charge, and exchange energy in predictable and directable ways via efficient electronic coupling, is critical for enabling the design of devices ranging from novel sensors to molecular/organic based electronics, to dye sensitized solar cells, where molecular assemblies are integral components for modulating the optoelectronic properties of the devices. Several key questions are addressed to foster the rational design of molecular based systems for these and other applications, and to guide their implementation. These questions include how can directed molecular interactions (e.g. van der Waals, hydrogen bonding and local cross-linking) influence electron transport behavior? Researchers also want to know how molecular assemblies can be spatially confined and fabricated with precise architectures in nanoscopic junctions for potential device applications? The team asks how the combined effects of spatial confinement and local intermolecular interactions within the assemblies and with surfaces afford control over their final resulting optical and electronic properties? A series of self-assembled systems is explored, including porphryinoids, two-dimensional (2D) cross-linked diacetylenic thiols, and donor-acceptor dye molecules, such as perylene, dicyanonaphthalene and diketopyrrolopyrrole derivatives. These are selected because their tailorable optoelectronic properties make them reasonable targets as components for organic electronic devices. Nanoscale assemblies of these materials are created on extended gold surfaces, and patterned gold nanostructures, to further explore the effects of exciton-plasmon coupling on the resulting optical and charge transport behavior of the assembled systems. The assembly processes and optoelectronic properties are measured in detail via a host of surface science approaches including, STM, AFM, XPS, IR and fluorescence and Raman spectroscopies. The project bridges the gap between understanding charge conduction in single molecules and extended molecular thin films, which is relatively unexplored.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
James D.德克萨斯农工大学的巴蒂斯和亚当B。布伦瑞克的研究基金会CUNY -先进的科学研究中心的支持下,大分子,超分子,和纳米化学计划在化学部发展的方法,使分子组装可以建立在扩展和纳米结构的金属表面表现出可预测的性能的理解。 在表面上构建精确的纳米级几何形状的分子组装体被设计成以直接的方式捕获和传输电荷和能量。 先进的成像和光学技术被用来检查所产生的结构,并确定结构如何控制电子通过分子的运动,或者它们如何与它们沉积的表面交换能量。 该项目推进了改进的光收集和太阳能转换,便携式化学传感和量子计算的发展。 在这项研究的过程中,来自不同背景的研究生,本科生和K-12学生准备加入先进的电子劳动力。 他们在化学合成,材料化学和表面科学的交叉点进行交叉研究,并在主要研究人员实验室之间的协调合作环境中进行培训。 设计可以捕获和传输电荷,并通过有效的电子耦合以可预测和直接的方式交换能量的分子组件,对于实现从新型传感器到基于分子/有机的电子器件到染料敏化太阳能电池的器件的设计是至关重要的,其中分子组件是用于调节器件的光电性质的组成部分。 几个关键问题的解决,以促进这些和其他应用程序的分子为基础的系统的合理设计,并指导其实施。 这些问题包括定向分子相互作用(例如货车范德华力、氢键和局部交联)如何影响电子传输行为? 研究人员还想知道如何在空间上限制分子组装,并在纳米结中制造精确的结构,以实现潜在的器件应用? 该团队询问,组装体内的空间限制和局部分子间相互作用以及与表面的组合效应如何控制其最终产生的光学和电子特性? 探索了一系列自组装体系,包括卟啉类化合物、二维(2D)交联二炔硫醇和供体-受体染料分子,如二萘嵌苯、二氰基萘和二酮基吡咯并吡咯衍生物。 之所以选择这些,是因为它们可定制的光电特性使它们成为有机电子器件的合理目标。 这些材料的纳米级组件被创建在扩展的金表面和图案化的金纳米结构上,以进一步探索激子-等离子体激元耦合对组装系统的所得光学和电荷传输行为的影响。组装过程和光电性能的详细测量,通过主机的表面科学的方法,包括,STM,AFM,XPS,IR和荧光和拉曼光谱。该项目弥合了理解单分子和扩展分子薄膜中电荷传导之间的差距,这是相对未开发的。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Batteas其他文献

James Batteas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Batteas', 18)}}的其他基金

NSF Center for the Mechanical Control of Chemistry
NSF 化学机械控制中心
  • 批准号:
    2303044
  • 财政年份:
    2023
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Cooperative Agreement
CCI Phase 1: NSF Center for the Mechanical Control of Chemistry
CCI 第一阶段:NSF 化学机械控制中心
  • 批准号:
    2023644
  • 财政年份:
    2020
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Experiments and Simulations at the Nexus of Geophysics, Chemistry, Materials Science and Mechanics to Determine the Physical Basis for Rate-State Friction
合作研究:结合地球物理学、化学、材料科学和力学来确定速率状态摩擦的物理基础的实验和模拟
  • 批准号:
    1951467
  • 财政年份:
    2020
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and Tuning the Molecular Arrangement and Charge Storage Properties of Textured Graphene-Ionic Liquid Interface
合作研究:理解和调节织构化石墨烯-离子液体界面的分子排列和电荷存储特性
  • 批准号:
    1904887
  • 财政年份:
    2019
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Directing Charge Transport in Hierarchical Molecular Assemblies
合作研究:指导分层分子组装中的电荷传输
  • 批准号:
    1611119
  • 财政年份:
    2016
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Studies on the Use of Atomically Thin Films for Controlling Friction and Adhesion at Interfaces
使用原子薄膜控制界面摩擦和粘附的研究
  • 批准号:
    1436192
  • 财政年份:
    2014
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Charge Transport in Confined Molecular Assemblies
合作研究:限域分子组装体中的电荷传输
  • 批准号:
    1213802
  • 财政年份:
    2012
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Studies of Friction and Adhesion in Nanoscale Asperity-Asperity Contacts
纳米级粗糙体-粗糙体接触中的摩擦和粘附研究
  • 批准号:
    1131361
  • 财政年份:
    2011
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Molecular Conduction in Confined Molecular Assemblies
合作研究:受限分子组装体中的分子传导
  • 批准号:
    0848786
  • 财政年份:
    2009
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Probing the Role of Surface Defects and Disorder on the Tribology of Nanoscopic Contacts
探讨表面缺陷和无序对纳米接触摩擦学的作用
  • 批准号:
    0825977
  • 财政年份:
    2008
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Laboratory and Modeling Studies to Resolve a Grand Challenge for Upper Atmospheric Science
合作研究:实验室和模型研究解决高层大气科学的巨大挑战
  • 批准号:
    2312192
  • 财政年份:
    2023
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Collaborative Research: IIBR Instrumentation: A continuous metabolite sensor for lab and field studies
合作研究:IIBR Instrumentation:用于实验室和现场研究的连续代谢物传感器
  • 批准号:
    2324717
  • 财政年份:
    2023
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHINE: Observational and Theoretical Studies of the Parametric Decay Instability in the Lower Solar Atmosphere
合作研究:SHINE:太阳低层大气参数衰变不稳定性的观测和理论研究
  • 批准号:
    2229101
  • 财政年份:
    2023
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Chemistry-Informed Ice Nucleation and Growth--Integrated Laboratory and Modeling Studies
合作研究:基于化学的冰成核和生长——综合实验室和模型研究
  • 批准号:
    2322857
  • 财政年份:
    2023
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID--Characterizing the Water Isotope Signature of an El Nino Event for Paleoclimate and Hydroclimate Studies
合作研究:RAPID——为古气候和水文气候研究描述厄尔尼诺事件的水同位素特征
  • 批准号:
    2333172
  • 财政年份:
    2023
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHINE: Observational and Theoretical Studies of the Parametric Decay Instability in the Lower Solar Atmosphere
合作研究:SHINE:太阳低层大气参数衰变不稳定性的观测和理论研究
  • 批准号:
    2229100
  • 财政年份:
    2023
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Chemistry-Informed Ice Nucleation and Growth--Integrated Laboratory and Modeling Studies
合作研究:基于化学的冰成核和生长——综合实验室和模型研究
  • 批准号:
    2322856
  • 财政年份:
    2023
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and mechanistic studies on microenvironment-sensitive polymeric nanoparticles for simultaneous contents release and ultrasound imaging
合作研究:微环境敏感聚合物纳米粒子的设计和机理研究,用于同时释放内容物和超声成像
  • 批准号:
    2322963
  • 财政年份:
    2023
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Fundamental studies of porous polymers for selective gold retrieval
合作研究:用于选择性金回收的多孔聚合物的基础研究
  • 批准号:
    2315087
  • 财政年份:
    2023
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Laboratory and Modeling Studies to Resolve a Grand Challenge for Upper Atmospheric Science
合作研究:实验室和模型研究解决高层大气科学的巨大挑战
  • 批准号:
    2312191
  • 财政年份:
    2023
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了