Collaborative Research: Understanding and Tuning the Molecular Arrangement and Charge Storage Properties of Textured Graphene-Ionic Liquid Interface

合作研究:理解和调节织构化石墨烯-离子液体界面的分子排列和电荷存储特性

基本信息

  • 批准号:
    1904887
  • 负责人:
  • 金额:
    $ 21.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-15 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Non-technical summary With the ever-increasing need for electrical power on demand, next generation energy storage devices (batteries and supercapacitors) must be designed that can support higher energy densities than current technologies. Therefore, new electrolyte and electrode materials must be explored that allow for higher electrolyte packing densities. To improve electrode/electrolyte interfaces, this project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, seeks to understand how the structure of ionic liquids and their arrangement at electrode interfaces may be tuned by precisely controlling electrode geometry on the nanoscale. Single-layer graphene, a carbon-based material, just one-atom thick, which can function as a conductive electrode that is highly flexible, is used to created textured electrodes for this study. The research team investigates the influence of the electrode morphology on the organization of the ionic liquid electrolyte and how it impacts charge storage. In addition to exploring these fundamental science questions, this project supports the education and training of undergraduate and graduate students from diverse backgrounds, at the intersection of materials and surface science, contributing to the development of the energy sector work force in the U.S., by training students in cross-cutting research in a coordinated collaborative environment between the labs of the principle investigators at UIUC and TAMU. Technical summaryWith this grant, supported by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, the principle investigators (Espinosa-Marzal at UIUC and Batteas at TAMU) test the fundamental hypothesis that by controlling surface morphology and substrate-induced charge doping, along with the chemical composition of the ionic liquids, the local packing density of the liquid on graphene can be precisely modulated. This in turn is expected to afford better control over their charge storage properties. To fill the outlined knowledge gap, the team pursues three major lines of research. New methods to prepare graphene surfaces with precisely controlled charge doping and morphology from the atomic to the nanoscale are developed. In addition, the effects of substrate morphology and charge doping on the interfacial structure of ionic liquids and on the characteristics of the electrical double layer are investigated by Atomic Force Microscopy in an electrochemical cell. Furthermore, local and global electrochemical impedance spectroscopy are used to relate the electrical double layer to the differential capacitance of the textured interfaces. These studies allow determining the relative contributions of graphene roughness, charge doping and ionic liquid composition on the electrical double layer and its capacitance. The knowledge gained from this project is expected to enable control of the interfacial assembly of the liquids and stored charge through the modulation of the graphene texture.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着对电力需求的不断增长,下一代储能设备(电池和超级电容器)必须设计成能够支持比当前技术更高的能量密度。因此,必须探索允许更高电解质填充密度的新电解质和电极材料。为了改善电极/电解质界面,该项目由NSF材料研究部的固态和材料化学计划支持,旨在了解如何通过精确控制电极几何形状来调整离子液体的结构及其在电极界面的排列。单层石墨烯是一种碳基材料,只有一个原子厚,可以用作高度灵活的导电电极,用于为这项研究创建纹理电极。研究小组研究了电极形态对离子液体电解质组织的影响,以及它如何影响电荷存储。除了探索这些基本的科学问题,该项目还支持来自不同背景的本科生和研究生的教育和培训,在材料和表面科学的交叉点,为美国能源部门劳动力的发展做出贡献,通过在UIUC和TAMU的主要研究人员的实验室之间的协调合作环境中培训学生进行交叉研究。技术摘要在NSF材料研究部的固态和材料化学项目的支持下,(UIUC的Espinosa-Marzal和TAMU的Batteas)测试了基本假设,即通过控制表面形态和衬底诱导的电荷掺杂,沿着离子液体的化学组成,可以精确地调节液体在石墨烯上的局部堆积密度。这又有望提供对它们的电荷存储性质的更好控制。为了填补所概述的知识差距,该团队进行了三大研究。开发了制备石墨烯表面的新方法,这些方法具有精确控制的电荷掺杂和从原子到纳米级的形态。此外,在电化学电池中利用原子力显微镜研究了基底形态和电荷掺杂对离子液体界面结构和双电层特性的影响。此外,局部和全局的电化学阻抗谱被用来与双电层的纹理界面的差分电容。这些研究允许确定石墨烯粗糙度、电荷掺杂和离子液体组成对双电层及其电容的相对贡献。从该项目中获得的知识有望通过石墨烯纹理的调制来控制液体和储存电荷的界面组装。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Insight into the Electrical Double Layer of Ionic Liquids Revealed through Its Temporal Evolution
  • DOI:
    10.1002/admi.202001313
  • 发表时间:
    2020-11-04
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Han, Mengwei;Kim, Hojun;Espinosa-Marzal, Rosa M.
  • 通讯作者:
    Espinosa-Marzal, Rosa M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Batteas其他文献

James Batteas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Batteas', 18)}}的其他基金

NSF Center for the Mechanical Control of Chemistry
NSF 化学机械控制中心
  • 批准号:
    2303044
  • 财政年份:
    2023
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Cooperative Agreement
CCI Phase 1: NSF Center for the Mechanical Control of Chemistry
CCI 第一阶段:NSF 化学机械控制中心
  • 批准号:
    2023644
  • 财政年份:
    2020
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Experiments and Simulations at the Nexus of Geophysics, Chemistry, Materials Science and Mechanics to Determine the Physical Basis for Rate-State Friction
合作研究:结合地球物理学、化学、材料科学和力学来确定速率状态摩擦的物理基础的实验和模拟
  • 批准号:
    1951467
  • 财政年份:
    2020
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: Studies of Charge Transport in Designed Nanoscale Molecular Assemblies
合作研究:设计纳米级分子组装体中电荷传输的研究
  • 批准号:
    2003840
  • 财政年份:
    2020
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Directing Charge Transport in Hierarchical Molecular Assemblies
合作研究:指导分层分子组装中的电荷传输
  • 批准号:
    1611119
  • 财政年份:
    2016
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant
Studies on the Use of Atomically Thin Films for Controlling Friction and Adhesion at Interfaces
使用原子薄膜控制界面摩擦和粘附的研究
  • 批准号:
    1436192
  • 财政年份:
    2014
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Charge Transport in Confined Molecular Assemblies
合作研究:限域分子组装体中的电荷传输
  • 批准号:
    1213802
  • 财政年份:
    2012
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant
Studies of Friction and Adhesion in Nanoscale Asperity-Asperity Contacts
纳米级粗糙体-粗糙体接触中的摩擦和粘附研究
  • 批准号:
    1131361
  • 财政年份:
    2011
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Molecular Conduction in Confined Molecular Assemblies
合作研究:受限分子组装体中的分子传导
  • 批准号:
    0848786
  • 财政年份:
    2009
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant
Probing the Role of Surface Defects and Disorder on the Tribology of Nanoscopic Contacts
探讨表面缺陷和无序对纳米接触摩擦学的作用
  • 批准号:
    0825977
  • 财政年份:
    2008
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
  • 批准号:
    2331729
  • 财政年份:
    2024
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
  • 批准号:
    2335235
  • 财政年份:
    2024
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
  • 批准号:
    2325464
  • 财政年份:
    2024
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
  • 批准号:
    2346230
  • 财政年份:
    2024
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
  • 批准号:
    2314272
  • 财政年份:
    2024
  • 资助金额:
    $ 21.72万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了