Data-Driven Dynamic Reliability Assessment of Lithium-Ion Battery Considering Degradation Mechanisms
考虑退化机制的数据驱动的锂离子电池动态可靠性评估
基本信息
- 批准号:1611333
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this project is to create a dynamic reliability assessment platform for lithium-ion (Li-ion) battery. Real-time diagnostics/prognostics and predictive maintenance/control of Li-ion battery are essential for reliable and safe battery operation in a wide-range of battery-powered applications, from hybrid and electric vehicles (HEVs/EVs) and medical devices, to the emerging smart grid and all electric airplanes. The proposed platform enables a battery management system (BMS) to develop predictive maintenance/control of a Li-ion battery through concurrently analyzing degradation mechanisms and anticipating failure modes. Successful execution of this research will advance our understanding of how to extend life and prevent catastrophic failure of Li-ion batteries, and will potentially lead to development of battery-powered devices that are more durable and safer than current devices. This project will disseminate research findings to battery industry by demonstrating the platform with a Li-ion battery in an implantable application, through collaboration with a leading industry partner. The project will offer a wide range of education and outreach programs, including 1) incorporating research findings into the Reliability Engineering curriculum, 2) leveraging university research programs to attract undergraduate and K-12 students to engineering career, and 3) organizing paper sessions and panels on Design for Failure Prevention of Li-Ion Battery in major conferences. To date, real-time diagnostics/prognostics of Li-ion battery has been exploited only empirically and largely in isolation with the underlying degradation mechanisms. This may be attributed to the lack of cognizance of the causal relationship between degradation mechanisms and failure modes. This project will bridge the gap between physical mechanisms and functional failures by creating a dynamic reliability assessment platform that facilitates a synergistic integration of physics-based modeling and sensor-based prognostics. The platform will allow for: 1) identification and quantitative analysis of multiple degradation mechanisms through online estimation of the degradation parameters; and 2) anticipation of the failure modes through online prediction of their remaining useful lives (RULs). The creation of the platform involves three research thrusts: 1) validation of multiphysics models, which updates multiphysics battery models using high precision charge-discharge cycling data; 2) training of health estimators, which adopts machine learning to quantitatively analyze multiple degradation mechanisms from a single measurement of charge curve; and 3) prognostics of failure modes, which leverages the quantitative degradation analysis for prediction of failure mode RULs. The platform provides the methods and tools needed to leverage prognostics and prognostics-informed predictive maintenance/control for achieving the failure prevention capability of BMS. Although this project focuses on the specific case of dynamically updating battery reliability with measured electrical data, the methodology will be applicable to other engineering cases in which measured data are used to dynamically update reliability estimates that support maintenance/control decision making.
本项目的目标是建立一个锂离子(Li-ion)电池的动态可靠性评估平台。锂离子电池的实时诊断/预测和预测性维护/控制对于电池在从混合动力和电动汽车(HEV/EV)和医疗设备到新兴的智能电网和全电动飞机等广泛的电池供电应用中的可靠和安全运行至关重要。提出的平台使电池管理系统(BMS)能够通过同时分析退化机制和预测故障模式来开发锂离子电池的预测性维护/控制。这项研究的成功将促进我们对如何延长锂离子电池的寿命和防止灾难性故障的理解,并可能导致开发出比现有设备更耐用、更安全的电池供电设备。该项目将通过与领先的行业合作伙伴合作,展示可植入应用的锂离子电池平台,向电池行业传播研究成果。该项目将提供广泛的教育和推广计划,包括1)将研究成果纳入可靠性工程课程,2)利用大学研究计划吸引本科生和K-12学生从事工程工作,3)在主要会议上组织关于锂离子电池失效预防设计的论文会议和小组讨论。到目前为止,锂离子电池的实时诊断/预测还只是经验上的,而且在很大程度上是与潜在的退化机制隔离开来的。这可能归因于缺乏对退化机制和失效模式之间的因果关系的认识。该项目将通过创建一个动态可靠性评估平台,促进基于物理的建模和基于传感器的预测的协同集成,来弥合物理机制和功能故障之间的差距。该平台将允许:1)通过在线估计退化参数来确定和定量分析多种退化机制;以及2)通过在线预测其剩余使用寿命(RUL)来预测失效模式。该平台的创建涉及三项研究工作:1)多物理模型的验证,它使用高精度的充放电循环数据更新多物理电池模型;2)培训健康估计员,它采用机器学习来从一次充电曲线测量中定量地分析多个退化机制;以及3)故障模式预测,它利用定量退化分析来预测故障模式RUL。该平台提供了利用预见性和预见性信息的预测性维护/控制来实现BMS的故障预防能力所需的方法和工具。虽然本项目关注的是使用测量的电气数据动态更新电池可靠性的具体情况,但该方法也适用于其他工程案例,其中使用测量的数据动态更新可靠性估计,以支持维护/控制决策。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Physics-Informed Machine Learning for Degradation Diagnostics of Lithium-Ion Batteries
- DOI:10.1115/detc2021-71407
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Adam Thelen;Y. Lui;Sheng Shen;S. Laflamme;Shan Hu;Chao Hu
- 通讯作者:Adam Thelen;Y. Lui;Sheng Shen;S. Laflamme;Shan Hu;Chao Hu
A physics-informed deep learning approach for bearing fault detection
- DOI:10.1016/j.engappai.2021.104295
- 发表时间:2021-05-18
- 期刊:
- 影响因子:8
- 作者:Shen, Sheng;Lu, Hao;Kenny, Shawn
- 通讯作者:Kenny, Shawn
Integrating Physics-Based Modeling and Machine Learning for Degradation Diagnostics of Lithium-Ion Batteries
- DOI:10.1016/j.ensm.2022.05.047
- 发表时间:2022-05
- 期刊:
- 影响因子:20.4
- 作者:Adam Thelen;Y. Lui;Sheng Shen;S. Laflamme;Shan Hu;Hui Ye;Chao Hu
- 通讯作者:Adam Thelen;Y. Lui;Sheng Shen;S. Laflamme;Shan Hu;Hui Ye;Chao Hu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chao Hu其他文献
Optimization for online catalytic upgrading of bio-oil from rape straw over MCM-22 zeolite
MCM-22沸石在线催化提质油菜秸秆生物油优化
- DOI:
10.1080/15567036.2019.1604898 - 发表时间:
2020-08 - 期刊:
- 影响因子:0
- 作者:
Xiaohua Li;Yongchen Zhu;Shanshan Shao;Xiaolei Zhang;Chao Hu - 通讯作者:
Chao Hu
Trademark Detection Based on Improved SSD Algorithm
基于改进SSD算法的商标检测
- DOI:
10.1145/3639479.3639483 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Xun Chen;Haidong Bi;Chao Hu - 通讯作者:
Chao Hu
Influence of animal body on ingested wireless device before and after death
动物尸体对死前和死后摄入的无线设备的影响
- DOI:
10.1109/aim.2008.4601655 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Lisheng Xu;M. Meng;Yawen Chan;Chao Hu;Haibin Wang - 通讯作者:
Haibin Wang
Refined Dynamic Theory of Thick Plates In Extension-Bending and Its New Formulism
- DOI:
10.12792/iciae2013.002 - 发表时间:
2012-04 - 期刊:
- 影响因子:0
- 作者:
Chao Hu - 通讯作者:
Chao Hu
Power Network Vulnerability Detection Based on Improved Adaboost Algorithm
基于改进Adaboost算法的电力网络脆弱性检测
- DOI:
10.1007/978-3-030-00012-7_58 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Wenwei Tao;Song Liu;Yang Su;Chao Hu - 通讯作者:
Chao Hu
Chao Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chao Hu', 18)}}的其他基金
Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
- 批准号:
2348642 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
CDS&E: Health-Aware Optimization of Battery Charging for Proactive Prevention of Lithium Plating
CDS
- 批准号:
2203990 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
CRII: CPS: Designing Complex Cyber-Physical Systems for Failure Resilience
CRII:CPS:设计复杂的网络物理系统以实现故障恢复
- 批准号:
1566579 - 财政年份:2016
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
相似海外基金
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
- 批准号:
2301411 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240982 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240981 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
CAREER: Data-driven dynamic adaptive optimization for next generation power system operation
职业:数据驱动的下一代电力系统运行的动态自适应优化
- 批准号:
2316675 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
CAREER: Data-Driven Control of High-Rate Dynamic Systems
职业:高速动态系统的数据驱动控制
- 批准号:
2237696 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Efficient and rapidly SCAlable EU-wide evidence-driven Pandemic response plans through dynamic Epidemic data assimilation
通过动态流行病数据同化,制定高效、快速、可扩展的欧盟范围内证据驱动的流行病应对计划
- 批准号:
10051037 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
EU-Funded
Multiscale data-driven failure prediction of hydrogen composite vessels under static and dynamic impact loading
静态和动态冲击载荷下氢复合材料容器的多尺度数据驱动失效预测
- 批准号:
EP/Y024567/1 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Fellowship
Data-Driven Dynamic State-Estimation for Modern Power Systems
现代电力系统的数据驱动动态状态估计
- 批准号:
2221784 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Electric Fleets with On-site Renewable Energy Sources (EFORES): Data-driven Dynamic Dispatching and Charging under Uncertainties
现场可再生能源电动车队(EFORES):不确定性下数据驱动的动态调度和充电
- 批准号:
EP/W028727/1 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Research Grant
A data-driven dynamic optimization framework for digital commerce platforms
数据驱动的数字商务平台动态优化框架
- 批准号:
568869-2022 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral