Complex Geometric and Lie Theoretic Aspects of Hodge Theory
霍奇理论的复杂几何和李理论方面
基本信息
- 批准号:1611939
- 负责人:
- 金额:$ 18.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Algebraic geometry is the study of solutions of polynomial equations. This is a central area of mathematics with a vast range of applications, a small sampling of which includes physics, cryptography, and computational complexity (the design of faster, more efficient computational algorithms). A powerful tool in the subject is Hodge theory, which associates a linear algebraic structure to a set of solutions of a system of polynomial equations. The advantage of this association is that the Hodge structure is often more amenable to computation and analysis than the original set of solutions, while at the same time retaining enough information to yield deep insights into the set of solutions (and the questions that one would like to answer about them). The principal objective of this research project is to develop Hodge theory so that it can be applied to a greater range of problems in algebraic geometry. The project will address a collection of problems in complex geometry and Lie theory that are motivated by Hodge theory. In practice this means that many of the questions concern (generalized) flag manifolds and flag domains, a canonical system of geometric partial differential equations on these spaces (whose integrals are called horizontal submanifolds), and locally homogeneous spaces. In Hodge theory, flag domains arise as period domains, the classifying spaces for polarized Hodge structures; flag manifolds as compact duals of period domains; the canonical system of geometric PDE as the infinitesimal period relation, Griffiths' system of differential equations constraining variations of Hodge structure. The work will include: (1) a generalization of the Satake-Baily-Borel compactification and Borel's extension theorem for locally Hermitian symmetric spaces to a class of locally homogeneous spaces of Hodge theoretic interest; (2) investigation of a conjectural mixed Hodge structure on the characteristic cohomology of the infinitesimal period relation; and (3) initiation of a program to study the extent to which a variation of Hodge structure is determined by its characteristic varieties.
代数几何是研究多项式方程的解的学科。这是数学的一个中心领域,有着广泛的应用,其中的一小部分包括物理、密码学和计算复杂性(设计更快、更高效的计算算法)。这门学科的一个强大工具是霍奇理论,它将线性代数结构与多项式方程组的一组解联系起来。这种关联的优势在于,Hodge结构通常比原始的解集合更易于计算和分析,同时保留了足够的信息,以产生对解集合(以及人们想要回答的关于它们的问题)的深入见解。这个研究项目的主要目标是发展霍奇理论,以便它可以应用于更广泛的代数几何问题。该项目将解决复杂几何和谎言理论中的一系列问题,这些问题是由霍奇理论推动的。在实践中,这意味着许多问题涉及(广义)旗形和旗域,这些空间上的几何偏微分方程组(其积分称为水平子流形),以及局部齐次空间。在Hodge理论中,旗域作为周期域出现,极化Hodge结构的分类空间;标志流形作为周期域的紧对偶;几何偏微分方程组的正则系统作为无穷小周期关系;Griffiths微分方程组约束Hodge结构的变化。这项工作将包括:(1)将局部厄米特对称空间的Satake-Baly-Borel紧化和Borel扩张定理推广到一类具有Hodge理论意义的局部齐次空间;(2)研究一种猜想的混合Hodge结构关于无穷小周期关系的特征上同调;(3)启动一个程序来研究Hodge结构的变化在多大程度上由其特征簇决定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Colleen Robles其他文献
Classification of smooth horizontal Schubert varieties
- DOI:
10.1007/s40879-017-0140-x - 发表时间:
2017-04-20 - 期刊:
- 影响因子:0.500
- 作者:
Matt Kerr;Colleen Robles - 通讯作者:
Colleen Robles
Completion of two-parameter period maps by nilpotent orbits
通过幂零轨道完成二参数周期图
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Haohua Deng;Colleen Robles - 通讯作者:
Colleen Robles
Classification of horizontal $ ext{SL}(2)$s
水平$ ext{SL}(2)$s的分类
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:1.8
- 作者:
Colleen Robles - 通讯作者:
Colleen Robles
Colleen Robles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Colleen Robles', 18)}}的其他基金
Complex Geometric Properties of Period Maps
周期图的复杂几何性质
- 批准号:
2304981 - 财政年份:2023
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant
Complex Geometric and Lie Theoretic Aspects of Hodge Theory
霍奇理论的复杂几何和李理论方面
- 批准号:
1906352 - 财政年份:2019
- 资助金额:
$ 18.16万 - 项目类别:
Continuing Grant
Hodge Theory and Representation Theory
霍奇理论和表示理论
- 批准号:
1559592 - 财政年份:2015
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant
Hodge Theory and Representation Theory
霍奇理论和表示理论
- 批准号:
1309238 - 财政年份:2013
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Lie superalgebra representations: a geometric approach
李超代数表示:几何方法
- 批准号:
DP220102530 - 财政年份:2022
- 资助金额:
$ 18.16万 - 项目类别:
Discovery Projects
Complex geometric structures and their moduli on Lie groups and homogeneous spaces
李群和齐次空间上的复杂几何结构及其模
- 批准号:
21K03248 - 财政年份:2021
- 资助金额:
$ 18.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric Structures on Lie Groupoids and their Applications
李群形上的几何结构及其应用
- 批准号:
2003223 - 财政年份:2020
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant
Complex Geometric and Lie Theoretic Aspects of Hodge Theory
霍奇理论的复杂几何和李理论方面
- 批准号:
1906352 - 财政年份:2019
- 资助金额:
$ 18.16万 - 项目类别:
Continuing Grant
Geometric structures on surfaces and representations into Lie groups
表面上的几何结构和李群的表示
- 批准号:
19K21023 - 财政年份:2018
- 资助金额:
$ 18.16万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Geometric themes in the theory of Lie supergroups and their quantisations
李超群理论中的几何主题及其量子化
- 批准号:
DP170104318 - 财政年份:2017
- 资助金额:
$ 18.16万 - 项目类别:
Discovery Projects
Geometric structures and surface group representations into Lie groups
几何结构和表面群表示为李群
- 批准号:
315299253 - 财政年份:2016
- 资助金额:
$ 18.16万 - 项目类别:
Research Grants
Arithmetic, Geometric and Ergodic Aspects of the Theory of Lie Groups and their discrete subgroups
李群及其离散子群理论的算术、几何和遍历方面
- 批准号:
1265695 - 财政年份:2013
- 资助金额:
$ 18.16万 - 项目类别:
Continuing Grant
Asymptotic branching laws for finite dimensional representations of complex reductive Lie groups by geometric methods
几何方法复数还原李群有限维表示的渐近分支律
- 批准号:
219517417 - 财政年份:2012
- 资助金额:
$ 18.16万 - 项目类别:
Collaborative Research: Computational Geometric Uncertainty Propagation for Hamiltonian Systems on a Lie Group
合作研究:李群上哈密顿系统的计算几何不确定性传播
- 批准号:
1243000 - 财政年份:2012
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant