Limit Shapes in Probability and Combinatorics
概率和组合学中的极限形状
基本信息
- 批准号:1612668
- 负责人:
- 金额:$ 7.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main goal of statistical mechanics, a field at the interface of mathematical probability and theoretical physics, is to understand the collective behavior of systems consisting of many interacting identical particles. One of the most interesting and important types of behavior is when an external force, such as an imposed boundary condition or other constraint, results in a non-homogeneity in the resulting system of particles. This non-homogeneity can result in abrupt changes in structure, called spatial phase transitions, where the system breaks into pieces with very different local behaviors. For example under a pressure gradient, water can have both solid and liquid phases in the same container. It is a challenging mathematical problem to understand these phases and their common boundaries. The project will investigate some of the mathematics involved in describing these kinds of phenomena at a generic level, with a goal to characterize the macroscopic shapes of the systems and their internal interfaces based on an understanding of their microscopic interactions. One of the main outcomes of this project, beyond the discovery of mathematical laws describing the complex behavior of condensed matter, will be the training of Ph.D. students in the mathematical sciences who will profit from working on cutting-edge topics in probability theory and combinatorics.The research project will study mathematical models of such limiting-shape behaviors, in several different settings, notably in planar configurational models such as "square ice" and related integrable statistical mechanical models. Bethe Ansatz techniques, although notoriously difficult in general, can be effectively applied in certain limiting situations to obtain mathematically rigorous limit shape theorems, as this project plans to show.
统计力学是数学概率和理论物理交界处的一个领域,其主要目标是理解由许多相互作用的完全相同的粒子组成的系统的集体行为。最有趣和最重要的行为类型之一是,当外力,如强加的边界条件或其他约束,导致所产生的粒子系统中的不均匀。这种非均质性可能导致结构的突然变化,称为空间相变,即系统分裂成具有非常不同的局部行为的碎片。例如,在压力梯度下,水可以在同一容器中同时具有固体和液体。理解这些阶段和它们的共同边界是一个具有挑战性的数学问题。该项目将研究在一般水平上描述这类现象所涉及的一些数学,目的是基于对它们微观相互作用的理解来表征系统及其内部界面的宏观形状。这个项目的主要成果之一,除了发现描述凝聚态复杂行为的数学规律外,还将培训数学科学的博士生,他们将从概率论和组合学的前沿课题中受益。该研究项目将在几个不同的环境中研究这种极限形状行为的数学模型,特别是在平面构型模型中,如“正方形冰”和相关的可积统计力学模型。正如本项目计划展示的那样,Bethe Ansat技术虽然在总体上是出了名的困难,但在某些极限情况下可以有效地应用,以获得数学上严格的极限形状定理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Kenyon其他文献
Monotone loop models and rational resonance
- DOI:
10.1007/s00440-010-0285-8 - 发表时间:
2010-05-07 - 期刊:
- 影响因子:1.600
- 作者:
Alan Hammond;Richard Kenyon - 通讯作者:
Richard Kenyon
Limit shapes from harmonicity: dominos and the five vertex model
和谐性限制形状:多米诺骨牌和五顶点模型
- DOI:
10.1088/1751-8121/ad17d7 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Richard Kenyon;I. Prause - 通讯作者:
I. Prause
Higher-rank dimer models
更高级别的二聚体模型
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Richard Kenyon;Nicholas Ovenhouse - 通讯作者:
Nicholas Ovenhouse
Parking Functions: From Combinatorics to Probability
- DOI:
10.1007/s11009-023-10022-5 - 发表时间:
2023-02-18 - 期刊:
- 影响因子:1.000
- 作者:
Richard Kenyon;Mei Yin - 通讯作者:
Mei Yin
Planar $3$-webs and the boundary measurement matrix
平面 $3$ 网和边界测量矩阵
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Richard Kenyon;Haolin Shi - 通讯作者:
Haolin Shi
Richard Kenyon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Kenyon', 18)}}的其他基金
SBIR Phase I: A hybrid phasor/waveform simulation tool for the accurate and efficient simulation of large electric power systems with high shares of inverter-based resources
SBIR 第一阶段:一种混合相量/波形仿真工具,用于精确高效地仿真具有高份额逆变器资源的大型电力系统
- 批准号:
2321329 - 财政年份:2023
- 资助金额:
$ 7.95万 - 项目类别:
Standard Grant
Limit Shapes from a Combinatorial Viewpoint
从组合角度限制形状
- 批准号:
1939926 - 财政年份:2019
- 资助金额:
$ 7.95万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Dimers in Combinatorics and Physics
FRG:合作研究:组合学和物理学中的二聚体
- 批准号:
1854272 - 财政年份:2019
- 资助金额:
$ 7.95万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Dimers in Combinatorics and Physics
FRG:合作研究:组合学和物理学中的二聚体
- 批准号:
1940932 - 财政年份:2019
- 资助金额:
$ 7.95万 - 项目类别:
Standard Grant
Limit Shapes from a Combinatorial Viewpoint
从组合角度限制形状
- 批准号:
1713033 - 财政年份:2017
- 资助金额:
$ 7.95万 - 项目类别:
Standard Grant
Integrability and limit shapes in the two-dimensional Ising model and related models
二维伊辛模型及相关模型中的可积性和极限形状
- 批准号:
1208191 - 财政年份:2012
- 资助金额:
$ 7.95万 - 项目类别:
Continuing Grant
Statistical mechanics of two-dimensional interfaces
二维界面的统计力学
- 批准号:
0805493 - 财政年份:2008
- 资助金额:
$ 7.95万 - 项目类别:
Continuing Grant
Technology Transfer to the Rochester City and Monroe County Governments
向罗彻斯特市和门罗县政府转让技术
- 批准号:
7624661 - 财政年份:1976
- 资助金额:
$ 7.95万 - 项目类别:
Standard Grant
Administration of Travel and Visiting Arrangements For Soviet Participants in the U.S.-U.S.S.R. Joint Program in Chemical Catalysis
美苏化学催化联合项目苏联参与者的旅行和访问安排管理
- 批准号:
7413541 - 财政年份:1974
- 资助金额:
$ 7.95万 - 项目类别:
Standard Grant
相似海外基金
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
- 批准号:
2315219 - 财政年份:2024
- 资助金额:
$ 7.95万 - 项目类别:
Standard Grant
Adapting Position-Based Dynamics as a Biophysically Accurate and Efficient Modeling Framework for Dynamic Cell Shapes
采用基于位置的动力学作为动态细胞形状的生物物理准确且高效的建模框架
- 批准号:
24K16962 - 财政年份:2024
- 资助金额:
$ 7.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
How inflammatory resolution shapes long-term tissue immunity
炎症消退如何塑造长期组织免疫力
- 批准号:
BB/X016854/1 - 财政年份:2024
- 资助金额:
$ 7.95万 - 项目类别:
Research Grant
Creation of a curved cilia mechanism based on oviduct-like elastic oscillations that realizes super-adaptive propulsion into lumens with various shapes
创建基于类输卵管弹性振荡的弯曲纤毛机制,实现对各种形状管腔的超自适应推进
- 批准号:
23K17736 - 财政年份:2023
- 资助金额:
$ 7.95万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
New molecular shapes from strained aromatic foldamer macrocycles and their application to development of PPI inhibitors
应变芳香折叠大环化合物的新分子形状及其在 PPI 抑制剂开发中的应用
- 批准号:
23KK0134 - 财政年份:2023
- 资助金额:
$ 7.95万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Type 2 immunity: a primitive response to epithelial injury that shapes bone marrow and lung myeloid crosstalk
2型免疫:对上皮损伤的原始反应,形成骨髓和肺髓细胞串扰
- 批准号:
10577950 - 财政年份:2023
- 资助金额:
$ 7.95万 - 项目类别:
How the short-term influence of drinking consequences shapes the development of expectancies: An event-level study
饮酒后果的短期影响如何影响预期的发展:一项事件级研究
- 批准号:
10748534 - 财政年份:2023
- 资助金额:
$ 7.95万 - 项目类别:
Donkey Politics: How China’s Belt & Road shapes everyday life in Pakistan
驴政治:中国的经济带如何
- 批准号:
DE220101073 - 财政年份:2023
- 资助金额:
$ 7.95万 - 项目类别:
Discovery Early Career Researcher Award
Analysis of Scientific Characteristics of Osaka's Specialty Vegetables with Distinctive Shapes by Cooking Method and Application to Food Education
大阪特色形状蔬菜的烹饪方法科学特征分析及其在食教中的应用
- 批准号:
23K12697 - 财政年份:2023
- 资助金额:
$ 7.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A new circulation system for materials using a combination of particle assembly and redispersion depending on particle shapes
一种新的材料循环系统,根据颗粒形状结合颗粒组装和再分散
- 批准号:
23K17839 - 财政年份:2023
- 资助金额:
$ 7.95万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)