Limit Shapes from a Combinatorial Viewpoint

从组合角度限制形状

基本信息

  • 批准号:
    1939926
  • 负责人:
  • 金额:
    $ 9.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

How does water turn into ice? How does a collection of iron atoms gain or lose magnetic properties with changes in temperature? "Statistical mechanics" is the branch of mathematics and physics which deals with understanding such systems: systems consisting of large numbers of identical objects, interacting locally. The main goals of statistical mechanics are to describe large-scale behavior and phase transitions through mathematical methods. One of the most interesting and important types of behavior is when an external force, such as an imposed boundary condition or other constraint, results in a non-homogeneity in the resulting ensemble. A simple example of this is the water/ice transition under a pressure gradient induced by gravity. The principal investigator proposes to study mathematical models of such behavior in a variety of basic settings, in hopes of understanding their common features and to be able to predict similar behavior in other potentially more complex systems.The notion of limit shape in probability describes the property of large random systems to settle into a fixed, nonrandom state in the limit of large system size. Typically limit shapes arise due to a combination of entropic considerations and energy minimization. Several diverse areas where limit shapes have been shown to arise are in the theory of random graphs with subgraph density constraints, random tilings with imposed boundary conditions, and random configurational models such as "square ice." These examples are all studied through variational formulations. By studying their common features the PI hopes to learn more about the limit shape phenomenon in general.
水是如何变成冰的?铁原子的集合是如何随着温度的变化而获得或失去磁性的?“统计力学”是数学和物理学的分支,它涉及理解这样的系统:由大量相同的物体组成的系统,局部相互作用。统计力学的主要目标是通过数学方法描述大尺度行为和相变。最有趣和最重要的行为类型之一是当外力,如强加的边界条件或其他约束,导致在所得到的合奏非均匀性。一个简单的例子是在重力引起的压力梯度下的水/冰转变。主要研究者建议在各种基本设置中研究这种行为的数学模型,希望能够理解它们的共同特征,并能够预测其他潜在更复杂系统的类似行为。概率极限形状的概念描述了大型随机系统在大型系统大小的限制下进入固定的非随机状态的属性。通常,由于熵考虑和能量最小化的结合,会出现极限形状。极限形状出现的几个不同的领域是具有子图密度约束的随机图理论、具有强加边界条件的随机平铺以及诸如“方形冰”的随机构形模型。“这些例子都是通过变分公式研究的。通过研究它们的共同特征,PI希望更多地了解极限形状现象。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A family of minimal and renormalizable rectangle exchange maps
一系列最小且可重整化的矩形交换映射
Holomorphic quadratic differentials on graphs and the chromatic polynomial
图和色多项式的全纯二次微分
  • DOI:
    10.1016/j.jcta.2019.105140
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kenyon, Richard;Lam, Wai Yeung
  • 通讯作者:
    Lam, Wai Yeung
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Kenyon其他文献

Monotone loop models and rational resonance
  • DOI:
    10.1007/s00440-010-0285-8
  • 发表时间:
    2010-05-07
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Alan Hammond;Richard Kenyon
  • 通讯作者:
    Richard Kenyon
Limit shapes from harmonicity: dominos and the five vertex model
和谐性限制形状:多米诺骨牌和五顶点模型
Higher-rank dimer models
更高级别的二聚体模型
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Kenyon;Nicholas Ovenhouse
  • 通讯作者:
    Nicholas Ovenhouse
Parking Functions: From Combinatorics to Probability
Planar $3$-webs and the boundary measurement matrix
平面 $3$ 网和边界测量矩阵
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Kenyon;Haolin Shi
  • 通讯作者:
    Haolin Shi

Richard Kenyon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Kenyon', 18)}}的其他基金

SBIR Phase I: A hybrid phasor/waveform simulation tool for the accurate and efficient simulation of large electric power systems with high shares of inverter-based resources
SBIR 第一阶段:一种混合相量/波形仿真工具,用于精确高效地仿真具有高份额逆变器资源的大型电力系统
  • 批准号:
    2321329
  • 财政年份:
    2023
  • 资助金额:
    $ 9.04万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Dimers in Combinatorics and Physics
FRG:合作研究:组合学和物理学中的二聚体
  • 批准号:
    1854272
  • 财政年份:
    2019
  • 资助金额:
    $ 9.04万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Dimers in Combinatorics and Physics
FRG:合作研究:组合学和物理学中的二聚体
  • 批准号:
    1940932
  • 财政年份:
    2019
  • 资助金额:
    $ 9.04万
  • 项目类别:
    Standard Grant
Limit Shapes from a Combinatorial Viewpoint
从组合角度限制形状
  • 批准号:
    1713033
  • 财政年份:
    2017
  • 资助金额:
    $ 9.04万
  • 项目类别:
    Standard Grant
Limit Shapes in Probability and Combinatorics
概率和组合学中的极限形状
  • 批准号:
    1612668
  • 财政年份:
    2016
  • 资助金额:
    $ 9.04万
  • 项目类别:
    Standard Grant
Integrability and limit shapes in the two-dimensional Ising model and related models
二维伊辛模型及相关模型中的可积性和极限形状
  • 批准号:
    1208191
  • 财政年份:
    2012
  • 资助金额:
    $ 9.04万
  • 项目类别:
    Continuing Grant
Statistical mechanics of two-dimensional interfaces
二维界面的统计力学
  • 批准号:
    0805493
  • 财政年份:
    2008
  • 资助金额:
    $ 9.04万
  • 项目类别:
    Continuing Grant
Technology Transfer to the Rochester City and Monroe County Governments
向罗彻斯特市和门罗县政府转让技术
  • 批准号:
    7624661
  • 财政年份:
    1976
  • 资助金额:
    $ 9.04万
  • 项目类别:
    Standard Grant
Administration of Travel and Visiting Arrangements For Soviet Participants in the U.S.-U.S.S.R. Joint Program in Chemical Catalysis
美苏化学催化联合项目苏联参与者的旅行和访问安排管理
  • 批准号:
    7413541
  • 财政年份:
    1974
  • 资助金额:
    $ 9.04万
  • 项目类别:
    Standard Grant

相似海外基金

Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
  • 批准号:
    2315219
  • 财政年份:
    2024
  • 资助金额:
    $ 9.04万
  • 项目类别:
    Standard Grant
Adapting Position-Based Dynamics as a Biophysically Accurate and Efficient Modeling Framework for Dynamic Cell Shapes
采用基于位置的动力学作为动态细胞形状的生物物理准确且高效的建模框架
  • 批准号:
    24K16962
  • 财政年份:
    2024
  • 资助金额:
    $ 9.04万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
How inflammatory resolution shapes long-term tissue immunity
炎症消退如何塑造长期组织免疫力
  • 批准号:
    BB/X016854/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.04万
  • 项目类别:
    Research Grant
Creation of a curved cilia mechanism based on oviduct-like elastic oscillations that realizes super-adaptive propulsion into lumens with various shapes
创建基于类输卵管弹性振荡的弯曲纤毛机制,实现对各种形状管腔的超自适应推进
  • 批准号:
    23K17736
  • 财政年份:
    2023
  • 资助金额:
    $ 9.04万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
New molecular shapes from strained aromatic foldamer macrocycles and their application to development of PPI inhibitors
应变芳香折叠大环化合物的新分子形状及其在 PPI 抑制剂开发中的应用
  • 批准号:
    23KK0134
  • 财政年份:
    2023
  • 资助金额:
    $ 9.04万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Type 2 immunity: a primitive response to epithelial injury that shapes bone marrow and lung myeloid crosstalk
2型免疫:对上皮损伤的原始反应,形成骨髓和肺髓细胞串扰
  • 批准号:
    10577950
  • 财政年份:
    2023
  • 资助金额:
    $ 9.04万
  • 项目类别:
How the short-term influence of drinking consequences shapes the development of expectancies: An event-level study
饮酒后果的短期影响如何影响预期的发展:一项事件级研究
  • 批准号:
    10748534
  • 财政年份:
    2023
  • 资助金额:
    $ 9.04万
  • 项目类别:
Analysis of Scientific Characteristics of Osaka's Specialty Vegetables with Distinctive Shapes by Cooking Method and Application to Food Education
大阪特色形状蔬菜的烹饪方法科学特征分析及其在食教中的应用
  • 批准号:
    23K12697
  • 财政年份:
    2023
  • 资助金额:
    $ 9.04万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A new circulation system for materials using a combination of particle assembly and redispersion depending on particle shapes
一种新的材料循环系统,根据颗粒形状结合颗粒组装和再分散
  • 批准号:
    23K17839
  • 财政年份:
    2023
  • 资助金额:
    $ 9.04万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Novel mechanism for flexible transformation of glass shapes inspired by unicellular algae
受单细胞藻类启发,灵活变换玻璃形状的新机制
  • 批准号:
    23K18054
  • 财政年份:
    2023
  • 资助金额:
    $ 9.04万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了