Variable Selection via Inverse Modeling for Detecting Nonlinear Relationships
通过逆向建模进行变量选择以检测非线性关系
基本信息
- 批准号:1613035
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the ever-growing amount of data in many application areas, effective methods for detecting factors influencing the value of a response variable are in high demand. It is of growing importance to develop methods for detecting variables that exert significant nonlinear response. Inspired by the sliced inverse regression method developed in the early 1990s, the PI proposes a general framework for developing effective variable selection strategies in nonlinear systems of high dimension. The PI will further study theoretical properties of these variable selection algorithms. The proposed theoretical investigation will provide theoretical understanding of limitations of existing dimension-reduction techniques when the dimensionality grows with the sample size. With the ever-growing amount of data in many application areas, effective methods for detecting factors that may influence the value of a target quantity of interest (response variable) are in high demand. The problem is termed as "variable (or feature) selection" in regression modeling and statistical learning, and is a long-standing problem in statistics and machine learning. The PI focuses here on the detection of factors that may exert nonlinear and/or interactive effects on the response variable. Recent studies from the PI's group reveal that the sliced inverse regression (SIR) and inverse modeling strategies provide a powerful framework for developing effective variable selection strategies in nonlinear systems of high dimension. The PI aims at developing more robust and effective tools for detecting such complex relationships and studying theoretical properties of SIR-based algorithms. The proposed method will also be applicable to do robust variable selection for classification problems. The proposed theoretical investigations will provide (a) theoretical understanding of limitations of existing dimension-reduction techniques when the dimensionality grows with the sample size; (b) guidance on the construction of necessary sparsity conditions that can guarantee consistency of variable selections in ultra-high dimensional nonlinear problems; (c) the optimal convergence rate of that the best possible learning algorithm can achieve in such settings; and (d) theoretical justifications whether the proposed algorithms can achieve or are not far from the optimality.
随着许多应用领域中数据量的不断增长,对检测影响响应变量值的因素的有效方法的需求很高。它是越来越重要的发展方法来检测变量施加显着的非线性响应。受20世纪90年代初发展起来的切片逆回归方法的启发,PI提出了一个在高维非线性系统中开发有效变量选择策略的一般框架。PI将进一步研究这些变量选择算法的理论特性。建议的理论研究将提供现有的降维技术的局限性时,随着样本量的维数增长的理论理解。 随着在许多应用领域中数据量的不断增长,用于检测可能影响感兴趣的目标量(响应变量)的值的因素的有效方法的需求很高。该问题在回归建模和统计学习中被称为“变量(或特征)选择”,是统计和机器学习中长期存在的问题。PI在此侧重于检测可能对响应变量产生非线性和/或交互影响的因素。PI小组最近的研究表明,切片逆回归(SIR)和逆建模策略提供了一个强大的框架,在高维非线性系统中开发有效的变量选择策略。PI旨在开发更强大和有效的工具来检测这种复杂的关系,并研究基于SIR的算法的理论特性。所提出的方法也将适用于做强大的变量选择分类问题。这些理论研究将提供:(a)当维数随样本量增长时,现有降维技术的局限性的理论认识;(B)指导构建必要的稀疏性条件,以保证超高维非线性问题中变量选择的一致性;(c)在这种设置下,最佳学习算法可以达到的最佳收敛速度;以及(d)所提出的算法是否能够实现或离最优性不远的理论证明。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the optimality of sliced inverse regression in high dimensions
- DOI:10.1214/19-aos1813
- 发表时间:2017-01
- 期刊:
- 影响因子:0
- 作者:Q. Lin;Xinran Li;Dongming Huang;Jun S. Liu
- 通讯作者:Q. Lin;Xinran Li;Dongming Huang;Jun S. Liu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Liu其他文献
Tolerance Simulation of Thin-walled C-section Composite Beam Assembling with Small Displacement Torsor Model
小位移扭转模型薄壁剖腹组合梁装配公差模拟
- DOI:
10.1016/j.procir.2016.02.015 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Hua Wang;Jun Liu - 通讯作者:
Jun Liu
The genetic susceptibility analysis of TAAR1 rs8192620 to methamphetamine and heroin abuse and its role in impulsivity
TAAR1 rs8192620对甲基苯丙胺和海洛因滥用的遗传易感性分析及其在冲动中的作用
- DOI:
10.1007/s00406-023-01613-x - 发表时间:
2023 - 期刊:
- 影响因子:4.7
- 作者:
F. Tang;Longtao Yang;Wenhan Yang;Cong Li;Jun Zhang;Jun Liu - 通讯作者:
Jun Liu
Propagation of Airy beams in a close-Λ electromagnetically induced transparency system
艾里光束在近距离电磁感应透明系统中的传播
- DOI:
10.1016/j.optcom.2015.02.001 - 发表时间:
2015 - 期刊:
- 影响因子:2.4
- 作者:
Fengjuan Ye;Liyun Zhang;Feiran Wang;Yongming Yang;Ya Yu;Jun Liu;Dong Wei;Pei Zhang;Hong Gao;Fuli Li - 通讯作者:
Fuli Li
Effect of polymer donor aggregation on the active layer morphology of amorphous polymer acceptor-based all-polymer solar cells
聚合物供体聚集对非晶聚合物受体基全聚合物太阳能电池活性层形貌的影响
- DOI:
10.1039/c9tc06668c - 发表时间:
2020-04 - 期刊:
- 影响因子:6.4
- 作者:
Lu Zhang;Zicheng Ding;Ruyan Zhao;Jirui Feng;Wei Ma;Jun Liu;Lixiang Wang - 通讯作者:
Lixiang Wang
Numerical Simulation of Fluid-Structure Interaction of D-shape Iced Conductor
D形覆冰导体流固耦合数值模拟
- DOI:
10.13052/ejcm1958-5829.2832 - 发表时间:
2019-08 - 期刊:
- 影响因子:1.2
- 作者:
Yi You;Zhitao Yan;Xiaochun Nie;Xiaogang Yang;Wensheng Li;Cheng He;Jun Liu - 通讯作者:
Jun Liu
Jun Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Liu', 18)}}的其他基金
REU Site: Molecular Biology and Genetics of Cell Signaling
REU 网站:细胞信号传导的分子生物学和遗传学
- 批准号:
2349577 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SCC-PG: Building a smart and connected rural community for improved healthcare access through the deployment of integrated mobility solutions
SCC-PG:通过部署集成移动解决方案,建设智能互联的农村社区,改善医疗保健服务
- 批准号:
2303284 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Bayesian and Semi-Bayesian Methods for Detecting Relationships in High Dimensions
合作研究:用于检测高维关系的贝叶斯和半贝叶斯方法
- 批准号:
2015411 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
REU Site: Molecular Biology and Genetics of Cell Signaling
REU 网站:细胞信号传导的分子生物学和遗传学
- 批准号:
1950247 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Domain-Engineering Enabled Thermal Switching in Ferroelectric Materials
领域工程支持铁电材料中的热开关
- 批准号:
2011978 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Pushing the Lower Limit of Thermal Conductivity in Layered Materials
事业:突破层状材料导热率的下限
- 批准号:
1943813 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: Novel Statistical Tools for Metagenomics and Metabolomics Data
合作研究:宏基因组学和代谢组学数据的新型统计工具
- 批准号:
1903139 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Travel Support for Student Participation at the 2019 ASME-IMECE Micro and Nano Technology Forum; Salt Lake City, Utah; November 10-14, 2019
为学生参加2019 ASME-IMECE微纳米技术论坛提供差旅支持;
- 批准号:
2000224 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Theoretical and Methodological Frameworks for Causal Inference of Peer Effects
合作研究:同伴效应因果推断的理论和方法框架
- 批准号:
1712714 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Novel statistical models for text mining with applications to Chinese history and texts
用于文本挖掘的新颖统计模型及其在中国历史和文本中的应用
- 批准号:
1208771 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
连锁群选育法(Linkage Group Selection)在柔嫩艾美耳球虫表型相关基因研究中应用
- 批准号:30700601
- 批准年份:2007
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Improving Science Communication via Results-Blind Selection: Lessons from Registered Reports
通过结果盲选改善科学传播:注册报告的经验教训
- 批准号:
2244878 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Data-driven selection of a convex loss function via shape-constrained estimation
通过形状约束估计来数据驱动选择凸损失函数
- 批准号:
2311299 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
The study for the augmentation of happiness via food selection behavior and mental by subjective and objective evaluations
通过主客观评价通过食物选择行为和心理增加幸福感的研究
- 批准号:
22K05844 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Better bioassays via designs for robots analyses with improved model selection and similarity bounds that limit potency bias
通过机器人分析设计实现更好的生物测定,并改进模型选择和限制效力偏差的相似性界限
- 批准号:
10155988 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
RUI: Evaluating selection via ocean acidification and evolutionary responses of two coastal fishes
RUI:通过海洋酸化和两种沿海鱼类的进化反应评估选择
- 批准号:
1948975 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Characterizing modes of natural selection via diverse ancient and modern samples
通过不同的古代和现代样本表征自然选择模式
- 批准号:
9788501 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Characterizing modes of natural selection via diverse ancient and modern samples
通过不同的古代和现代样本表征自然选择模式
- 批准号:
10463845 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Characterizing modes of natural selection via diverse ancient and modern samples
通过不同的古代和现代样本表征自然选择模式
- 批准号:
10241443 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Characterization of regulatory mechanisms mediating microRNA selection, packaging and transfer via microvesicles
通过微泡介导 microRNA 选择、包装和转移的调控机制的表征
- 批准号:
349825282 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Research Grants
III: Small: A New Perspective on Grouped Variable Selection via Modern Optimization
III:小:通过现代优化进行分组变量选择的新视角
- 批准号:
1718258 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant