Collaborative Research: Bayesian and Semi-Bayesian Methods for Detecting Relationships in High Dimensions
合作研究:用于检测高维关系的贝叶斯和半贝叶斯方法
基本信息
- 批准号:2015411
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this big-data era, massive data sets are being generated routinely and we are seeing a growing need for powerful, reliable, and interpretable statistical learning tools to help understand these data. The main ideas and approaches in this projectl focus on developing effective statistical learning tools to learn about complex and heterogeneous structures, such as those changing in time or varying among different groups of individuals, in high-dimensions. The activities will have a significant impact on high dimensional Bayesian analysis and modeling of nonlinear relationships. While most current efforts for high-dimensional Bayesian analyses have been focused on linear models, this project focuses on two ways of generalizing standard linear models to meet certain practical challenges: one is a generalized form of mixture modeling, termed as individualized variable selection, which enables each individual observation to have its own set of dependent variables through the employment of neuronized priors. Another extension is the Bayesian inference of index models that form a mixture structure. The project will lead to useful tools (or customized software) for discovering interpretable nonlinear and interactive patterns among a large number of potential variables. Various aspects of statistical modeling, design, and learning strategies integrated in our algorithms are broadly applicable to problems involving signal discovery in complex systems and high-dimensional data. The project will also provide both educational and interdisciplinary research opportunities for graduate students, and will result in software useful to biomedical researchers, economists, social scientists, and many other practitioners. In a vast number of regression problems, especially under high-dimensional settings, the structure of the association between covariates in hand and the target quantity of interest might be heterogeneous over observations, which calls for effective methods to detect such non-trivial structures. Standard procedures, including traditional variable selections, commonly overlook the existence of interplays of these heterogeneous factors. This research project aims to develop statistical procedures that identify the complicated relationship between response Y and a set of covariates X in flexible and computationally efficient ways. Project 1 focuses on Bayesian individualized variable selection (BIVS), which generalizes standard linear regression models to quantify heterogeneous effects among individual observations that differ in their dependent variables with different magnitudes. The PIs will investigate its theoretical properties, including model selection consistency and its robustness when the model assumption is violated. Project 2 is devoted to the development of an efficient Bayesian method to infer the semi-parametric relationship between the response and covariates through general index models. The PIs will explore its computational feasibility and theoretical properties such as the posterior contraction rate on the estimation of the sufficient dimension reduction space. Project 3 focuses on a fast tuning parameter selection procedure by employing a generative process via neural networks. By using this procedure, the cross-validation can be efficiently implemented for general models, such as the BIVS and Bayesian index models, regularized variable selection, and nonparametric function estimation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个大数据时代,大量的数据集正在常规地生成,我们越来越需要强大、可靠、可解释的统计学习工具来帮助理解这些数据。本项目的主要思想和方法侧重于开发有效的统计学习工具,以了解复杂和异质结构,例如那些随时间变化或在不同个体群体之间变化的高维结构。这些活动将对高维贝叶斯分析和非线性关系建模产生重大影响。虽然目前大多数高维贝叶斯分析的努力都集中在线性模型上,但本项目侧重于两种推广标准线性模型的方法,以应对某些实际挑战:一种是广义形式的混合建模,称为个性化变量选择,它使每个单独的观察都有自己的一组因变量,通过使用神经元化先验。另一个扩展是形成混合结构的索引模型的贝叶斯推理。该项目将产生有用的工具(或定制软件),用于在大量潜在变量中发现可解释的非线性和交互模式。统计建模、设计和学习策略的各个方面集成在我们的算法中,广泛适用于复杂系统和高维数据中的信号发现问题。该项目还将为研究生提供教育和跨学科的研究机会,并将产生对生物医学研究人员、经济学家、社会科学家和许多其他实践者有用的软件。在大量的回归问题中,特别是在高维设置下,在手中的协变量和感兴趣的目标数量之间的关联结构可能在观察中是异质的,这需要有效的方法来检测这种非平凡结构。标准程序,包括传统的变量选择,通常忽略了这些异质因素之间相互作用的存在。本研究项目旨在开发统计程序,以灵活和计算高效的方式识别响应Y和一组协变量X之间的复杂关系。项目1的重点是贝叶斯个性化变量选择(BIVS),它推广了标准线性回归模型,以量化不同程度因变量不同的个体观测值之间的异质性效应。pi将研究其理论性质,包括模型选择一致性和模型假设违反时的鲁棒性。项目2致力于开发一种有效的贝叶斯方法,通过一般指数模型来推断响应与协变量之间的半参数关系。pi将探讨其计算可行性和理论性质,如对足够降维空间估计的后验收缩率。项目3侧重于通过神经网络采用生成过程的快速调谐参数选择程序。利用该方法,可以有效地实现一般模型的交叉验证,如BIVS和贝叶斯指数模型、正则化变量选择和非参数函数估计。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
False Discovery Rate Control via Data Splitting
- DOI:10.1080/01621459.2022.2060113
- 发表时间:2022-05-25
- 期刊:
- 影响因子:3.7
- 作者:Dai, Chenguang;Lin, Buyu;Liu, Jun S.
- 通讯作者:Liu, Jun S.
Neuronized Priors for Bayesian Sparse Linear Regression
- DOI:10.1080/01621459.2021.1876710
- 发表时间:2018-09
- 期刊:
- 影响因子:3.7
- 作者:Minsuk Shin;Jun S. Liu
- 通讯作者:Minsuk Shin;Jun S. Liu
Varying Coefficient Model via Adaptive Spline Fitting
通过自适应样条拟合改变系数模型
- DOI:10.1080/10618600.2023.2267616
- 发表时间:2023
- 期刊:
- 影响因子:2.4
- 作者:Wang, Xufei;Jiang, Bo;Liu, Jun S.
- 通讯作者:Liu, Jun S.
Bayesian bi-clustering methods with applications in computational biology
- DOI:10.1214/22-aoas1622
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Han Yan;Jiexing Wu;Y. Li;Jun S. Liu
- 通讯作者:Han Yan;Jiexing Wu;Y. Li;Jun S. Liu
Stratification and Optimal Resampling for Sequential Monte Carlo
顺序蒙特卡罗的分层和最佳重采样
- DOI:10.1093/biomet/asab004
- 发表时间:2020-04
- 期刊:
- 影响因子:2.7
- 作者:Yichao Li;Wenshuo Wang;Ke Deng;Jun S. Liu
- 通讯作者:Jun S. Liu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Liu其他文献
Loop-Mediated Isothermal Amplification (LAMP): Potential Point-of-Care Testing for Vulvovaginal Candidiasis
环介导等温扩增 (LAMP):外阴阴道念珠菌病的潜在护理点测试
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Meng Li;Xiangyu Jin;Qingyun Jiang;Hongbo Wei;Anni Deng;Zeyin Mao;Ying Wang;Zhen Zeng;Yifan Wu;Shuai Liu;Juhyun Kim;Xiaoqian Wang;Ying Liu;Jun Liu;Wenqi Lv;Leyang Huang;Q. Liao;Guoliang Huang;Lei Zhang - 通讯作者:
Lei Zhang
Rumoring, Disinformation, and Contentious Politics in the Digital Age
数字时代的谣言、虚假信息和有争议的政治
- DOI:
10.1002/9781119743347.ch14 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Jun Liu - 通讯作者:
Jun Liu
Supplementary for DepthGAN: GAN-based Depth Generation from Semantic Layouts
DepthGAN 的补充:基于语义布局的 GAN 深度生成
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
S. Zhang;Yonggen Wu;Yi;Zhihui Xu;Wenming Chen;Dahan Zheng;Wei;Jun Liu;Ying Zhou - 通讯作者:
Ying Zhou
Analysis of Frequency Response of Power Transformers Considering Frequency Variation Characteristics
考虑频率变化特性的电力变压器频率响应分析
- DOI:
10.1109/acpee60788.2024.10532698 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yilun Wang;Yulu Fan;Zhenggang He;Meng Gao;Kun Li;Ran Zhuo;Jun Liu;Sicheng Zhao - 通讯作者:
Sicheng Zhao
UV3D: Underwater Video Stream 3D Reconstruction Based on Efficient Global SFM
UV3D:基于高效全局SFM的水下视频流3D重建
- DOI:
10.3390/app12125918 - 发表时间:
2022-06 - 期刊:
- 影响因子:0
- 作者:
Yanli Chen;Qiushi Li;Shenghua Gong;Jun Liu;Wenxue Guan - 通讯作者:
Wenxue Guan
Jun Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Liu', 18)}}的其他基金
REU Site: Molecular Biology and Genetics of Cell Signaling
REU 网站:细胞信号传导的分子生物学和遗传学
- 批准号:
2349577 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
SCC-PG: Building a smart and connected rural community for improved healthcare access through the deployment of integrated mobility solutions
SCC-PG:通过部署集成移动解决方案,建设智能互联的农村社区,改善医疗保健服务
- 批准号:
2303284 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Domain-Engineering Enabled Thermal Switching in Ferroelectric Materials
领域工程支持铁电材料中的热开关
- 批准号:
2011978 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
REU Site: Molecular Biology and Genetics of Cell Signaling
REU 网站:细胞信号传导的分子生物学和遗传学
- 批准号:
1950247 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
CAREER: Pushing the Lower Limit of Thermal Conductivity in Layered Materials
事业:突破层状材料导热率的下限
- 批准号:
1943813 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Travel Support for Student Participation at the 2019 ASME-IMECE Micro and Nano Technology Forum; Salt Lake City, Utah; November 10-14, 2019
为学生参加2019 ASME-IMECE微纳米技术论坛提供差旅支持;
- 批准号:
2000224 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Novel Statistical Tools for Metagenomics and Metabolomics Data
合作研究:宏基因组学和代谢组学数据的新型统计工具
- 批准号:
1903139 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Collaborative Research: Theoretical and Methodological Frameworks for Causal Inference of Peer Effects
合作研究:同伴效应因果推断的理论和方法框架
- 批准号:
1712714 - 财政年份:2017
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Variable Selection via Inverse Modeling for Detecting Nonlinear Relationships
通过逆向建模进行变量选择以检测非线性关系
- 批准号:
1613035 - 财政年份:2016
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Novel statistical models for text mining with applications to Chinese history and texts
用于文本挖掘的新颖统计模型及其在中国历史和文本中的应用
- 批准号:
1208771 - 财政年份:2012
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341237 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
- 批准号:
2348163 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
- 批准号:
2333326 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
- 批准号:
2333324 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
- 批准号:
2333325 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210282 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
- 批准号:
2215169 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
- 批准号:
2215168 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Advancing Bayesian Thinking in STEM
合作研究:推进 STEM 中的贝叶斯思维
- 批准号:
2215920 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant