Singular limits with geometric effects

具有几何效应的奇异极限

基本信息

  • 批准号:
    1613153
  • 负责人:
  • 金额:
    $ 28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

This award supports the ongoing research program of the Principal Investigator on the mathematical analysis of some problems arising in engineering and applied science, in particular involving fluids in thin domains and thin elastic structures. The Principal Investigator will combine techniques from several areas of mathematics to study certain engineering design problems. These problems are linked by their "singular limits" context and the fact that their solutions are tuned to a variable geometry setting or to a-posteriori obtained geometrical constraints. The topics that will be tackled fall into four categories: (1) dimension reduction in fluid dynamics (e.g., determining effective two-dimensional models for the behavior of a fluid in a thin domain), (2) modeling and analysis of the shape of a growing body (as in various contexts in biology), (3) rigidity and flexibility of elastic prestrained materials (as caused, for example, by inhomogeneous growth or swelling or shrinkage), (4) energy scaling regimes in elasto-plastic materials (for which deformations are irreversible beyond a certain point).The following analytical techniques will be investigated: (1) dimension reduction and homogenization of compressible Navier-Stokes equations using relative entropy and scaling of the Korn and the conformal Korn inequalities in thin domains, (2) a novel "controlled growth" model, due to A. Bressan, that couples the partial differential equation for the transport of morphogen-producing cells (in cellular biology) with two constrained minimization problems for the morphogen concentration and the growth velocity, (3) variational models in prestrained elasticity in the presence of the Monge-Ampere constraint without any a-priori assumption on the structure of its minimizers (such as convexity, higher regularity, or boundary conditions) studied using convex integration, (4) dimension reduction via Gamma-convergence in the context of elasto-plasticity.
该奖项支持首席研究员正在进行的研究计划,对工程和应用科学中出现的一些问题进行数学分析,特别是涉及薄域和薄弹性结构中的流体。 首席研究员将联合收割机技术从几个领域的数学研究某些工程设计问题。 这些问题通过其“奇异极限”背景以及其解被调整到可变几何设置或事后获得的几何约束这一事实而联系在一起。 将处理的主题分为四类:(1)流体动力学中的降维(例如,确定薄域中流体行为的有效二维模型),(2)生长体形状的建模和分析(如在生物学的各种背景下),(3)弹性预应变材料的刚性和柔性(例如,由于不均匀生长或膨胀或收缩而引起的),(4)弹塑性材料中的能量标度体系(在超过某一点时,变形是不可逆的)。将研究下列分析技术:(1)利用相对熵和Korn不等式的标度以及薄区域上的共形Korn不等式,对可压缩Navier-Stokes方程进行降维和均匀化;(2)提出了一个新的“受控增长”模型。Bressan,该方程耦合了形态生成细胞运输的偏微分方程(3)在Monge-Ampere约束下的预应变弹性变分模型,其中对最小解的结构没有任何先验假设(4)在弹塑性问题中通过Gamma收敛降维。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marta Lewicka其他文献

The Monge-Ampère system in dimension two: A regularity improvement
二维蒙日 - 安培系统:一种正则性改进
  • DOI:
    10.1016/j.jfa.2025.111064
  • 发表时间:
    2025-10-15
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Marta Lewicka
  • 通讯作者:
    Marta Lewicka
A remark on the genericity of multiplicity results for forced oscillations on manifolds
Visualization of the convex integration solutions to the Monge-Ampère equation
Monge-Ampère 方程凸积分解的可视化
On the genericity of the multiplicity results for forced oscillations on compact manifolds

Marta Lewicka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marta Lewicka', 18)}}的其他基金

Dimension Reduction and Singular Limits of Prestrained Structures
预应变结构的降维和奇异极限
  • 批准号:
    2006439
  • 财政年份:
    2020
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Theoretical Models of Shape Formation: Analysis, Geometry and Energy Scaling Laws
形状形成的理论模型:分析、几何和能量缩放定律
  • 批准号:
    1406730
  • 财政年份:
    2014
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Workshop on "Advances in Nonlinear Science"
“非线性科学进展”研讨会
  • 批准号:
    1266188
  • 财政年份:
    2013
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
CAREER: Thin shells - problems in nonlinear elasticity and fluid dynamics
职业:薄壳 - 非线性弹性和流体动力学问题
  • 批准号:
    1338869
  • 财政年份:
    2011
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Dynamics and Stable Structures in Some Nonlinear PDEs
一些非线性偏微分方程中的动力学和稳定结构
  • 批准号:
    1142369
  • 财政年份:
    2011
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
CAREER: Thin shells - problems in nonlinear elasticity and fluid dynamics
职业:薄壳 - 非线性弹性和流体动力学问题
  • 批准号:
    0846996
  • 财政年份:
    2009
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Dynamics and Stable Structures in Some Nonlinear PDEs
一些非线性偏微分方程中的动力学和稳定结构
  • 批准号:
    0707275
  • 财政年份:
    2007
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Well Posedness of Systems of Conservation Laws Near Solutions Containing Large Waves
包含大波浪的解附近守恒定律系统的适定性
  • 批准号:
    0600371
  • 财政年份:
    2005
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Well Posedness of Systems of Conservation Laws Near Solutions Containing Large Waves
包含大波浪的解附近守恒定律系统的适定性
  • 批准号:
    0306201
  • 财政年份:
    2003
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant

相似海外基金

Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
  • 批准号:
    EP/Y027795/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Research Grant
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
  • 批准号:
    24K06758
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
  • 批准号:
    2340289
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
  • 批准号:
    2337375
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Flame quenching and Lean blow-off limits of new zero/low-carbon fuels towards delivering a green Aviation; a combined Modelling & Experimental study
新型零碳/低碳燃料的熄火和精益吹气限制,以实现绿色航空;
  • 批准号:
    EP/Y020839/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Research Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
  • 批准号:
    24K06843
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Learning from Data on Structured Complexes: Products, Bundles, and Limits
职业:从结构化复合体的数据中学习:乘积、捆绑和限制
  • 批准号:
    2340481
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Pushing the limits of electronic delocalization in organic molecules
突破有机分子电子离域的极限
  • 批准号:
    DE240100664
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Discovery Early Career Researcher Award
Asymptotic patterns and singular limits in nonlinear evolution problems
非线性演化问题中的渐近模式和奇异极限
  • 批准号:
    EP/Z000394/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Research Grant
Pushing the Limits of High-Field Solid-State NMR Technology: Enhancing Applications to Advanced Materials, the Life Sciences and Pharmaceuticals
突破高场固态核磁共振技术的极限:增强先进材料、生命科学和制药的应用
  • 批准号:
    EP/Z532836/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了