Dimension Reduction and Singular Limits of Prestrained Structures
预应变结构的降维和奇异极限
基本信息
- 批准号:2006439
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is directed at the study of properties and behavior of "prestrained elastica". Elastica (elastic materials) are the solid materials which return to their original shape and size after forces applied to them are removed. If an elastic body is appropriately processed mechanically (e.g. rolled), thermally (cooled non-uniformly during heat treatment), chemically ("nitrided" through surface absorption of nitrogen) or exposed to inhomogeneous growth, stresses and strains may develop in the body at equilibrium, leading to the material that has been prestrained (strained in advance). A characteristic which singles out the quality of prestraining in a body is that even in the absence of exterior forces the body assumes a shape that is radically different from the same body without strains. This phenomenon has been observed in different contexts: from growing leaves, through liquid crystals (used in various displays), to polymer gels; it is especially significant for materials formed as thin sheets. With the advancement of wide manufacturing and use of the novel materials in the thin film shape (molecular thin films, nanotubes, perforated domains, engineered gels), it becomes especially important to gain a theoretical insight on how to relate the prestrain with the elastic energy stored in the body. Attaining such a theoretical insight is the overarching objective of this project. One of applications of this research is controlling the structural properties of the desired final product through fine-tuning its manufacturing conditions. This project includes opportunities for the research training of students at various educational levels and disseminating obtained results to research communities of mathematicians and engineers. The project has theoretical as well as applied aspects, representing contributions to mathematical analysis, differential geometry, calculus of variations, materials science, and engineering design. Specifically, the general dimension reduction classification of prestrained elastic materials, with the prestrain given through a Riemannian metric of arbitrarily large (or arbitrarily small) curvature, as well as distributed across the mid-surface and the thickness of the film, will be developed. Further, the curvature constraints obtained in the process of dimensionally reducing the energy of a prestrained thin film and corresponding to different energy and regularity of deformations regimes, will be studied. This includes the rigidity and flexibility of Holder-continuous solutions to the quadratic Monge-Ampere system in arbitrary spatial dimensions. Finally, the project will involve the time-dependent and discrete versions of the stationary continuum problems mentioned above, including the random environment setting.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本项目旨在研究“预应变弹性体”的性能和行为。弹性材料(弹性材料)是施加在其上的力被移除后恢复到其原始形状和大小的固体材料。如果对弹性体进行适当的机械处理(例如轧制)、热处理(在热处理过程中不均匀冷却)、化学处理(通过表面氮气吸收进行氮化)或暴露在非均匀生长中,则应力和应变可能在平衡状态下在体内发展,从而导致材料已经预应变(预先应变)。身体预紧的一个特征是,即使在没有外力的情况下,身体也会呈现出与没有张力的身体完全不同的形状。这种现象在不同的环境中都可以观察到:从生长的叶子,到液晶(用于各种显示器),再到聚合物凝胶;这对形成薄片的材料尤其重要。随着薄膜形状的新型材料(分子薄膜、纳米管、穿孔域、工程凝胶)的广泛制造和使用,如何从理论上了解预应变与体内储存的弹性能量之间的关系变得尤为重要。达到这样的理论洞察力是这个项目的首要目标。这项研究的应用之一是通过微调其制造条件来控制所需最终产品的结构特性。该项目包括对不同教育水平的学生进行研究培训的机会,并将所取得的成果传播给数学家和工程师的研究界。该项目既有理论方面的,也有应用方面的,代表了对数学分析、微分几何、变分、材料科学和工程设计的贡献。具体地说,将发展预应变弹性材料的一般降维分类,其中预应变通过任意大(或任意小)曲率的黎曼度量给出,并且分布在膜的中表面和厚度上。此外,还将研究在量纲降低预应变薄膜能量的过程中获得的对应于不同能量和变形区域规律性的曲率约束。这包括任意空间维度上二次Monge-Ampere系统Holder连续解的刚性和灵活性。最后,该项目将涉及上述静止连续体问题的时间依赖和离散版本,包括随机环境设置。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marta Lewicka其他文献
The Monge-Ampère system in dimension two: A regularity improvement
二维蒙日 - 安培系统:一种正则性改进
- DOI:
10.1016/j.jfa.2025.111064 - 发表时间:
2025-10-15 - 期刊:
- 影响因子:1.600
- 作者:
Marta Lewicka - 通讯作者:
Marta Lewicka
A remark on the genericity of multiplicity results for forced oscillations on manifolds
- DOI:
10.1007/s102310200030 - 发表时间:
2002-03-01 - 期刊:
- 影响因子:0.900
- 作者:
Marta Lewicka;Marco Spadini - 通讯作者:
Marco Spadini
Visualization of the convex integration solutions to the Monge-Ampère equation
Monge-Ampère 方程凸积分解的可视化
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.5
- 作者:
Luca Codenotti;Marta Lewicka - 通讯作者:
Marta Lewicka
On the genericity of the multiplicity results for forced oscillations on compact manifolds
- DOI:
10.1007/s000300050008 - 发表时间:
1999-12-01 - 期刊:
- 影响因子:1.200
- 作者:
Marta Lewicka;Marco Spadini - 通讯作者:
Marco Spadini
Marta Lewicka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marta Lewicka', 18)}}的其他基金
Singular limits with geometric effects
具有几何效应的奇异极限
- 批准号:
1613153 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Theoretical Models of Shape Formation: Analysis, Geometry and Energy Scaling Laws
形状形成的理论模型:分析、几何和能量缩放定律
- 批准号:
1406730 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Workshop on "Advances in Nonlinear Science"
“非线性科学进展”研讨会
- 批准号:
1266188 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Thin shells - problems in nonlinear elasticity and fluid dynamics
职业:薄壳 - 非线性弹性和流体动力学问题
- 批准号:
1338869 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Dynamics and Stable Structures in Some Nonlinear PDEs
一些非线性偏微分方程中的动力学和稳定结构
- 批准号:
1142369 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Thin shells - problems in nonlinear elasticity and fluid dynamics
职业:薄壳 - 非线性弹性和流体动力学问题
- 批准号:
0846996 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Dynamics and Stable Structures in Some Nonlinear PDEs
一些非线性偏微分方程中的动力学和稳定结构
- 批准号:
0707275 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Well Posedness of Systems of Conservation Laws Near Solutions Containing Large Waves
包含大波浪的解附近守恒定律系统的适定性
- 批准号:
0600371 - 财政年份:2005
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Well Posedness of Systems of Conservation Laws Near Solutions Containing Large Waves
包含大波浪的解附近守恒定律系统的适定性
- 批准号:
0306201 - 财政年份:2003
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
兼捕减少装置(Bycatch Reduction Devices, BRD)对拖网网囊系统水动力及渔获性能的调控机制
- 批准号:32373187
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
The role of youth voluntary actions in Disaster Risk Reduction in the Ganges Brahmaputra and Meghna (GBM) delta
青年志愿行动在雅鲁藏布江和梅格纳河三角洲减少灾害风险中的作用
- 批准号:
2593674 - 财政年份:2025
- 资助金额:
$ 40万 - 项目类别:
Studentship
Noise-reduction mechanisms in jet engines: chevrons are the answer
喷气发动机的降噪机制:人字形就是答案
- 批准号:
DE240100933 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Discovery Early Career Researcher Award
Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
- 批准号:
EP/Y002474/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Modulating H2O Activity Promotes CO2 Reduction to Multi-Carbon Products
调节 H2O 活性可促进多碳产品的 CO2 还原
- 批准号:
2326720 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Contorted and Strained Molecular Nanographenes: Multi-Electron Storage and Reduction-Induced Transformations
扭曲和应变的分子纳米石墨烯:多电子存储和还原诱导的转变
- 批准号:
2404031 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAS:Improving the Activity of Homogeneous Mn Catalysts for the Oxygen Reduction Reaction
CAS:提高均相锰催化剂的氧还原反应活性
- 批准号:
2348515 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Probing Electrochemical Interface in CO2 reduction by Operando Computation
通过操作计算探测二氧化碳还原中的电化学界面
- 批准号:
DE240100846 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Discovery Early Career Researcher Award
Multimetallic CO2 Reduction Catalysts as Artificial Cofactors
作为人工辅助因子的多金属二氧化碳还原催化剂
- 批准号:
EP/Y002695/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Effect of Reynolds number on drag reduction: from near-wall cycle to large-scale motions.
雷诺数对减阻的影响:从近壁循环到大规模运动。
- 批准号:
2345157 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant