Dynamics and Stable Structures in Some Nonlinear PDEs

一些非线性偏微分方程中的动力学和稳定结构

基本信息

  • 批准号:
    1142369
  • 负责人:
  • 金额:
    $ 0.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

The goal of this project is to study four stable structures arising in various physical phenomena, modeled by nonlinear partial differential equations:(i) Traveling waves in the Boussinesq model of reactive flows: The Boussinesq system is the simplest system of equations exhibiting behavior of premixed flames in a gravitationally stratified medium.(ii) Attractors to Navier-Stokes equations in thin three-dimensional domains: The working condition of previous research in the area has been that the limiting geometry, as the thickness of the domain vanishes, is flat. This project will investigate the technically more involved case of non-flat limit geometries. This investigation is partially motivated by adapting the model to applications, e.g. in oceanography.(iii) Self-similar, singular solutions to the complex Ginzburg-Landau equation: This equation describes a variety of phenomena, from nonlinear waves to second-order phase transitions. Interest also stems from analogies with the three-dimensional Navier-Stokes equation and the three-dimensional supercritical nonlinear Schrodinger equation.(iv) Rarefaction wave solutions to strictly hyperbolic systems of conservation laws with large data (following on results of NSF grant DMS-0306201).The stability of patterns arising as solutions to equations of mathematical physics, notably related to fluid or gas dynamics, is of central interest to scientists and engineers. The stable patterns are those expected to be observed in experiments. They may be continuous waves, jumps (for example in the density of the studied quantities), or other singularities. Analysis of unstable patterns, solutions of the equations that are non-observable physically, gives important insight into the time evolution of the observed ones. This project analyzes patterns in solutions of several important systems of equations. The applications range from meteorology, blood circulation, lubrication, and combustion in gases, to studies of phase transition phenomena such as super-conductivity, super-fluidity, and liquid crystals.
本项目的目标是研究由非线性偏微分方程模拟的各种物理现象中产生的四种稳定结构:(i)反应流动的Boussinesq模型中的行波:Boussinesq系统是最简单的方程组,显示了重力分层介质中预混火焰的行为。(ii)三维薄域内Navier-Stokes方程的吸引子:该领域以往研究的工作条件是,随着区域厚度的消失,极限几何是平坦的。这个项目将研究技术上更复杂的非平面极限几何的情况。这项调查的部分动机是使模型适应应用,例如在海洋学中。(iii)复金兹堡-朗道方程的自相似奇异解:该方程描述了从非线性波到二阶相变的各种现象。与三维纳维-斯托克斯方程和三维超临界非线性薛定谔方程的类比也引起了人们的兴趣。(iv)具有大数据的严格双曲守恒律系统的稀疏波解(根据NSF拨款DMS-0306201的结果)。数学物理方程(特别是与流体或气体动力学有关的方程)的解所产生的模式的稳定性是科学家和工程师最感兴趣的问题。稳定的模式是那些预期在实验中观察到的。它们可能是连续波、跳跃(例如所研究量的密度)或其他奇点。对不稳定模式的分析,即物理上不可观测的方程的解,对观测到的方程的时间演化提供了重要的见解。这个项目分析了几个重要方程组的解的模式。其应用范围从气象学、血液循环、润滑和气体燃烧,到研究相变现象,如超导性、超流动性和液晶。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marta Lewicka其他文献

The Monge-Ampère system in dimension two: A regularity improvement
二维蒙日 - 安培系统:一种正则性改进
  • DOI:
    10.1016/j.jfa.2025.111064
  • 发表时间:
    2025-10-15
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Marta Lewicka
  • 通讯作者:
    Marta Lewicka
A remark on the genericity of multiplicity results for forced oscillations on manifolds
Visualization of the convex integration solutions to the Monge-Ampère equation
Monge-Ampère 方程凸积分解的可视化
On the genericity of the multiplicity results for forced oscillations on compact manifolds

Marta Lewicka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marta Lewicka', 18)}}的其他基金

Dimension Reduction and Singular Limits of Prestrained Structures
预应变结构的降维和奇异极限
  • 批准号:
    2006439
  • 财政年份:
    2020
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Standard Grant
Singular limits with geometric effects
具有几何效应的奇异极限
  • 批准号:
    1613153
  • 财政年份:
    2016
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Standard Grant
Theoretical Models of Shape Formation: Analysis, Geometry and Energy Scaling Laws
形状形成的理论模型:分析、几何和能量缩放定律
  • 批准号:
    1406730
  • 财政年份:
    2014
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Standard Grant
Workshop on "Advances in Nonlinear Science"
“非线性科学进展”研讨会
  • 批准号:
    1266188
  • 财政年份:
    2013
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Standard Grant
CAREER: Thin shells - problems in nonlinear elasticity and fluid dynamics
职业:薄壳 - 非线性弹性和流体动力学问题
  • 批准号:
    1338869
  • 财政年份:
    2011
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Continuing Grant
CAREER: Thin shells - problems in nonlinear elasticity and fluid dynamics
职业:薄壳 - 非线性弹性和流体动力学问题
  • 批准号:
    0846996
  • 财政年份:
    2009
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Continuing Grant
Dynamics and Stable Structures in Some Nonlinear PDEs
一些非线性偏微分方程中的动力学和稳定结构
  • 批准号:
    0707275
  • 财政年份:
    2007
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Standard Grant
Well Posedness of Systems of Conservation Laws Near Solutions Containing Large Waves
包含大波浪的解附近守恒定律系统的适定性
  • 批准号:
    0600371
  • 财政年份:
    2005
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Standard Grant
Well Posedness of Systems of Conservation Laws Near Solutions Containing Large Waves
包含大波浪的解附近守恒定律系统的适定性
  • 批准号:
    0306201
  • 财政年份:
    2003
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Standard Grant

相似国自然基金

超α-stable过程及相关过程的大偏差理论
  • 批准号:
    10926110
  • 批准年份:
    2009
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
与稳定(Stable)过程有关的极限定理
  • 批准号:
    10901054
  • 批准年份:
    2009
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
基于Alpha-stable分布的SAR影像建模与分析方法研究
  • 批准号:
    40871199
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Stable structures and chaotic dynamics in fluid flows
流体流动中的稳定结构和混沌动力学
  • 批准号:
    EP/X020886/1
  • 财政年份:
    2023
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Research Grant
Evaluation of spatio-temporal genetic structures of the tidal marsh plant driven by disturbances and stable environments
扰动和稳定环境驱动下的潮汐沼泽植物时空遗传结构评价
  • 批准号:
    23K11507
  • 财政年份:
    2023
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Manufacturing of Mechanically Stable Nanoporous Ceramic Structures Via Selective Infiltration of Polymer Templates
职业:通过聚合物模板的选择性渗透制造机械稳定的纳米多孔陶瓷结构
  • 批准号:
    2045662
  • 财政年份:
    2021
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Standard Grant
Collaborative Research: 3D Printing of Bioinspired Hierarchical Structures with Controllable Roughness for Stable and Long-term Air Retention
合作研究:3D 打印具有可控粗糙度的仿生分层结构,以实现稳定和长期的空气保留
  • 批准号:
    2113727
  • 财政年份:
    2021
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Standard Grant
Collaborative Research: 3D Printing of Bioinspired Hierarchical Structures with Controllable Roughness for Stable and Long-term Air Retention
合作研究:3D 打印具有可控粗糙度的仿生分层结构,以实现稳定和长期的空气保留
  • 批准号:
    2114119
  • 财政年份:
    2021
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Standard Grant
Mathematical analyses on predictions and controls for stable structures of free boundaries with feedback-type phase changes
反馈型相变自由边界稳定结构预测与控制的数学分析
  • 批准号:
    20K03672
  • 财政年份:
    2020
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EFRI C3 SoRo: Integration of Avian Flight Control Strategies with Self Adaptive Structures for Stable Flight in Unknown Flows
EFRI C3 SoRo:将鸟类飞行控制策略与自适应结构相结合,实现未知流量中的稳定飞行
  • 批准号:
    1935216
  • 财政年份:
    2020
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Continuing Grant
Three-dimensional behavior analysis of stable and metastable structures of clathrate hydrates
笼形水合物稳定和亚稳结构的三维行为分析
  • 批准号:
    20K05440
  • 财政年份:
    2020
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
In-situ analysis of ultra-stable fluorescent nanoparticles confined in nanoscale structures
限制在纳米级结构中的超稳定荧光纳米粒子的原位分析
  • 批准号:
    19K21935
  • 财政年份:
    2019
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Highly Stable Normally-off GaN-based transistors via Structures and Process
通过结构和工艺实现高度稳定的常关型 GaN 晶体管
  • 批准号:
    19K04528
  • 财政年份:
    2019
  • 资助金额:
    $ 0.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了