Numerical Methods and Algorithms for Second Order Fully Nonlinear Partial Differential Equations
二阶完全非线性偏微分方程的数值方法和算法
基本信息
- 批准号:0710831
- 负责人:
- 金额:$ 22.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-15 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Second order fully nonlinear partial differential equations (PDEs) arise from many areas in science and engineering such as differential geometry, optimal control, mass transportation, materials science, meteorology, geostrophic fluid dynamics. They constitute the most difficult class of differential equations to analyze analytically and to approximate numerically. In the past two decades, enormous advances in the theoretical analysis has been achieved, based on the viscosity solution theory, for second order fully nonlinear PDEs. On the other hand, in contrast to the success of the PDE analysis, numerical solutions for general second order fully nonlinear PDEs is mostly an untouched area, and computing viscosity solutions of second order fully nonlinear PDEs has been impracticable. In this research project, the PI plans to conduct an extensive and systematic study of numerical methods and algorithms for second order fully nonlinear PDEs based on a newly developed moment solution concept and a constructive vanishing moment methodology. The specific tasks of the project include (i) to continue developing the moment solution theory for Monge-Ampere type PDEs and for general second order fully nonlinear elliptic and parabolic PDEs in two and three dimensions; (ii) to develop finite element, mixed finite element, discontinuous Galerkin, and spectral Galerkin discretization methods; (iii) to analyze convergence and rates of convergence for all proposed discretization methods; (iv) to design preconditioned Newton type nonlinear solvers; (v) to develop computer code based on Comsol Multiphysics platform for implementing the proposed discretization methods and solution algorithms on high performance workstations.The completion of the proposed project will have a profound impact on both theoretical study and numerical approximations of second order fully nonlinear PDEs. It will provide the first practical and successful methodology/approach, which is backed by rigorous PDE and numerical theories, for approximating second order fully nonlinear PDEs. As a by-product, the moment solution theory will enrich the current understanding of the viscosity solution theory, and might be very likely to provide a logical and natural generalization/extension for the viscosity solution concept. The findings of the proposed research will provide the much needed capability and enabling tools for computing correctly and efficiently those challenging fully nonlinear PDEs from differential geometry, general relativity, fluid mechanics, materials science, optimal control, mass transportation, meteorology, image processing, especially, in the cases where there are no theories. The educational component of this project is to engage and train graduate students in developing necessary applied and computational mathematics knowledge and skills so that they can pursue a successful career in science and engineering in the future.
二阶完全非线性偏微分方程(PDE)广泛存在于微分几何、最优控制、物质运输、材料科学、气象学、地转流体动力学等科学和工程领域。它们构成了最困难的一类微分方程的分析和近似数值。在过去的二十年中,基于粘性解理论,二阶完全非线性偏微分方程的理论分析取得了巨大的进展。另一方面,与偏微分方程分析的成功相比,一般二阶完全非线性偏微分方程的数值解大多是未涉及的领域,而计算二阶完全非线性偏微分方程的粘性解一直是不切实际的。在这个研究项目中,PI计划进行广泛和系统的研究的数值方法和算法的二阶完全非线性偏微分方程的基础上,一个新开发的矩解的概念和建设性消失矩的方法。该项目的具体任务包括:(i)继续发展Monge-Ampere型偏微分方程和一般二维和三维二阶完全非线性椭圆和抛物偏微分方程的矩解理论;(ii)发展有限元、混合有限元、间断Galerkin和谱Galerkin离散化方法;(iii)分析所有提出的离散化方法的收敛性和收敛速度;(iv)研究离散化方法的收敛性和收敛速度。(iv)设计预处理牛顿型非线性求解器;(v)开发基于Comsol Multiphysics平台的计算机代码,以便在高性能工作站上实现所提出的离散化方法和求解算法。拟议项目的完成将对二阶完全非线性偏微分方程的理论研究和数值逼近产生深远的影响。它将提供第一个实际和成功的方法/途径,这是严格的偏微分方程和数值理论的支持下,近似二阶完全非线性偏微分方程。作为一个副产品,矩解理论将丰富目前的理解的粘度溶液理论,并可能提供一个逻辑和自然的推广/扩展的粘度溶液的概念。拟议研究的结果将提供急需的能力和支持工具,以正确有效地计算那些具有挑战性的完全非线性偏微分方程,这些偏微分方程来自微分几何、广义相对论、流体力学、材料科学、最优控制、公共交通、气象学、图像处理,特别是在没有理论的情况下。该项目的教育部分是参与和培训研究生发展必要的应用和计算数学知识和技能,使他们能够在未来的科学和工程事业取得成功。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaobing Feng其他文献
DNNTune: Automatic Benchmarking DNN Models for Mobile-cloud Computing
DNNTune:移动云计算 DNN 模型的自动基准测试
- DOI:
10.1145/3368305 - 发表时间:
2019 - 期刊:
- 影响因子:1.6
- 作者:
Chunwei Xia;Jiacheng Zhao;Huimin Cui;Xiaobing Feng;Jingling Xue - 通讯作者:
Jingling Xue
Associations of urinary 1,3-butadiene metabolite with glucose homeostasis, prediabetes, and diabetes in the US general population: Role of alkaline phosphatase.
美国普通人群尿 1,3-丁二烯代谢物与葡萄糖稳态、糖尿病前期和糖尿病的关联:碱性磷酸酶的作用。
- DOI:
10.1016/j.envres.2023.115355 - 发表时间:
2023 - 期刊:
- 影响因子:8.3
- 作者:
Ruyi Liang;Xiaobing Feng;Da Shi;Linling Yu;Meng Yang;Min Zhou;Yongfang Zhang;Bin Wang;Weihong Chen - 通讯作者:
Weihong Chen
Depth Camera Based Fluid Reconstruction and its Solid-fluid Interaction
基于深度相机的流体重建及其固液相互作用
- DOI:
10.1145/3328756.3328761 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Xiaobing Feng;Juan Zhang;Dengming Zhu;Min Shi;Zhaoqi Wang - 通讯作者:
Zhaoqi Wang
CloudRaid: Detecting Distributed Concurrency Bugs via Log Mining and Enhancement
CloudRaid:通过日志挖掘和增强检测分布式并发错误
- DOI:
10.1109/tse.2020.2999364 - 发表时间:
2022-02 - 期刊:
- 影响因子:7.4
- 作者:
Jie Lu;Feng Li;Chen Liu;Lian Li;Xiaobing Feng;Jingling Xue - 通讯作者:
Jingling Xue
Cascade Wide Activation Multi-Scale Networks for Single Image Super-Resolution
用于单图像超分辨率的级联宽激活多尺度网络
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yiwei Zhang;He Huang;Qingliang Chen;Xu Zhang;Jianxing Liang;H. Yin;Xiaobing Feng;Shasha Wang - 通讯作者:
Shasha Wang
Xiaobing Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaobing Feng', 18)}}的其他基金
Novel Numerical Methods for Nonlinear Stochastic PDEs and High Dimensional Computation
非线性随机偏微分方程和高维计算的新数值方法
- 批准号:
2309626 - 财政年份:2023
- 资助金额:
$ 22.79万 - 项目类别:
Continuing Grant
Efficient Numerical Methods and Algorithms for Nonlinear Stochastic Partial Differential Equations
非线性随机偏微分方程的高效数值方法和算法
- 批准号:
2012414 - 财政年份:2020
- 资助金额:
$ 22.79万 - 项目类别:
Standard Grant
Novel numerical methods for fully nonlinear second order elliptic and parabolic Monge-Ampere and Hamilton-Jacobi-Bellman equations
全非线性二阶椭圆和抛物线 Monge-Ampere 和 Hamilton-Jacobi-Bellman 方程的新颖数值方法
- 批准号:
1620168 - 财政年份:2016
- 资助金额:
$ 22.79万 - 项目类别:
Continuing Grant
Novel Discontinuous Galerkin Finite Element Methods for Second Order Fully Nonlinear Equations and High Frequency Wave Equations
二阶完全非线性方程和高频波动方程的新型间断伽辽金有限元方法
- 批准号:
1318486 - 财政年份:2013
- 资助金额:
$ 22.79万 - 项目类别:
Standard Grant
Conference: Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations
会议:偏微分方程不连续伽辽金有限元方法的最新进展
- 批准号:
1203237 - 财政年份:2012
- 资助金额:
$ 22.79万 - 项目类别:
Standard Grant
Numerical Methods and Algorithms for Fully Nonlinear Second Order Evolution Equations with Applications
全非线性二阶演化方程的数值方法和算法及其应用
- 批准号:
1016173 - 财政年份:2010
- 资助金额:
$ 22.79万 - 项目类别:
Continuing Grant
International Workshop on Computational Methods in Geosciences
地球科学计算方法国际研讨会
- 批准号:
0715713 - 财政年份:2007
- 资助金额:
$ 22.79万 - 项目类别:
Standard Grant
Computational Challenges in Geometrical Flows: Numerical Methods and Analysis, Algorithmic Development and Software Engineering
几何流中的计算挑战:数值方法和分析、算法开发和软件工程
- 批准号:
0410266 - 财政年份:2004
- 资助金额:
$ 22.79万 - 项目类别:
Standard Grant
The Barrett Lectures May, 2001 "New Directions and Developments in Computational Mathematics
巴雷特讲座,2001 年 5 月“计算数学的新方向和发展
- 批准号:
0107159 - 财政年份:2001
- 资助金额:
$ 22.79万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Numerical Methods and Adaptive Algorithms for Sixth-Order Phase Field Models
合作研究:六阶相场模型的数值方法和自适应算法
- 批准号:
2110774 - 财政年份:2021
- 资助金额:
$ 22.79万 - 项目类别:
Standard Grant
Algorithms and Numerical Methods for Optimization with Partial Differential Equation Constraints
偏微分方程约束优化的算法和数值方法
- 批准号:
2110263 - 财政年份:2021
- 资助金额:
$ 22.79万 - 项目类别:
Standard Grant
Collaborative Research: Numerical Methods and Adaptive Algorithms for Sixth-Order Phase Field Models
合作研究:六阶相场模型的数值方法和自适应算法
- 批准号:
2110768 - 财政年份:2021
- 资助金额:
$ 22.79万 - 项目类别:
Standard Grant
Efficient Numerical Methods and Algorithms for Nonlinear Stochastic Partial Differential Equations
非线性随机偏微分方程的高效数值方法和算法
- 批准号:
2012414 - 财政年份:2020
- 资助金额:
$ 22.79万 - 项目类别:
Standard Grant
Study on algorithms of numerical methods for large scale nonlinear optimization problems and their implementation
大规模非线性优化问题数值方法算法研究及其实现
- 批准号:
20K11698 - 财政年份:2020
- 资助金额:
$ 22.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of time-parallel numerical integration algorithms using probabilistic methods with applications to magnetic fusion plasma.
使用概率方法开发时间并行数值积分算法并应用于磁聚变等离子体。
- 批准号:
2271223 - 财政年份:2019
- 资助金额:
$ 22.79万 - 项目类别:
Studentship
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
- 批准号:
RGPIN-2015-05648 - 财政年份:2019
- 资助金额:
$ 22.79万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
- 批准号:
RGPIN-2015-05648 - 财政年份:2018
- 资助金额:
$ 22.79万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
- 批准号:
RGPIN-2015-05648 - 财政年份:2017
- 资助金额:
$ 22.79万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
- 批准号:
RGPIN-2015-05648 - 财政年份:2016
- 资助金额:
$ 22.79万 - 项目类别:
Discovery Grants Program - Individual