Conference: Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations

会议:偏微分方程不连续伽辽金有限元方法的最新进展

基本信息

  • 批准号:
    1203237
  • 负责人:
  • 金额:
    $ 2.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-02-01 至 2013-01-31
  • 项目状态:
    已结题

项目摘要

The principal investigator (PI) and Co-PIs organize the 2012 John H. Barrett Memorial Lectures in the University of Tennessee at Knoxville from May 9-11, 2012 (www.math.utk.edu/~xfeng/barrett/). The Barrett Lectures have been held annually since 1972. Each year a different topic is chosen, representing the research interests of the mathematics faculty of the University of Tennessee. Since 1993, the lectures have consisted of three one-hour survey talks by each of two or three leading researchers representing different themes and directions in a single field. The topic of the 2012 Barrett Lectures is: ``Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations". The main speakers of the 2012 Barrett Lectures are Franco Brezzi of University of Pavia(Italy) and Chi-Wang Shu of Brown University. Each of them will deliver three one-hour survey lectures on recent developments in discontinuous Galerkin finite element methods with respective emphases on interior penalty and local discontinuous Galerkin methods. In addition to the main speakers, ten speakers are also invited to give one-hour talks on topics related to one of the main lectures and on applications of discontinuous Galerkin finite element methods to hyperbolic conservation laws and Hamilton-Jacobi equations, convection-diffusion equations, shallow water equations, porous media flows, elasticity, high frequency wave equations, and materials phase transitions. Moreover, a poster session is also scheduled in the Lectures, giving the opportunity to those who attend the meeting to present their work in these areas.The Barrett Lectures are partly funded by a grant from the University of Tennessee and have often received additional support from the National Science Foundation. They attract wide interest, with an audience of between 40 and 60 participants from the whole country, in addition to faculty and students from Knoxville and the Oak Ridge National Laboratory. They represent one of the few long standing lecture series in mathematics in the southeastern United States. The main objective of the 2012 Barrett Lectures is to provide the participants with an exposition of modern discontinuous Galerkin finite element methods for partial differential equations arising from various scientific/engineering/industrial applications, through in-depth survey lectures and informal discussions with the leading researchers in the field. Additional goals are to foster interdisciplinary collaboration, particularly with researchers in the domain sciences departments and in the College of Engineering at the University of Tennessee and several other southeastern institutions, and to generate a set of written surveys in the subject, which the organizing committee will endeavor to have published in book form. The fund being requested from the NSF will be spent providing partial support towards travel and accommodation for thirty graduate students, postdocs, and junior researchers who do not have research grants.
首席研究员(PI)和Co-Pis于2012年5月9日至11日在田纳西大学的田纳西大学组织2012 John H. Barrett纪念演讲(www.math.utk.edu/~xfeng/~xfeng/barrett/)。自1972年以来,Barrett讲座每年举行。每年选择一个不同的主题,代表田纳西大学数学学院的研究兴趣。自1993年以来,讲座由三个或三位领先的研究人员中的每个一小时的调查演讲组成,这些研究人员代表一个领域的不同主题和方向。 2012年Barrett演讲的主题是:``````零件微分方程''的不连续的盖尔金有限元方法的最新发展。关于内部罚款和本地不连续的盖尔金方法。此外,材料相过渡。除了教职员工和来自诺克斯维尔和橡树岭国家实验室的学生外,他们引起了广泛的兴趣,全国的40至60名参与者都吸引了人们的兴趣。它们代表了美国东南部数学的少数长期讲座系列之一。 2012年Barrett讲座的主要目的是为参与者提供现代不连续的Galerkin有限元方法,用于通过各种科学/工程/工业应用,通过深入的调查讲座以及与该领域的主要研究人员的非正式讨论引起的部分微分方程。其他目标是促进跨学科的合作,尤其是与田纳西大学和其他一些东南部机构的领域科学系以及工程学院的研究人员,并在该主题中产生一组书面调查,组织委员会将努力以书籍形式出版。 NSF要求的基金将用于为三十名研究生,博士后和没有研究补助的初级研究人员提供部分支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaobing Feng其他文献

Concurrency bug localization using shared memory access pairs
使用共享内存访问对的并发错误定位
PAI-WSIT: a Comprehensive Curated Resource for Cancerous Pathology With Deep Learning
PAI-WSIT:利用深度学习进行癌症病理学的综合策划资源
  • DOI:
    10.21203/rs.3.rs-495066/v1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    17.6
  • 作者:
    Changjiang Zhou;Xiaobing Feng;Yijie Jin;H. Gu;Youcai Zhao;X. Teng;Lingchuan Guo;Jiatong Ji;Shuopeng Jia;Yan Xing;Xiangshan Fan;Jun Liao
  • 通讯作者:
    Jun Liao
Associations of urinary 1,3-butadiene metabolite with glucose homeostasis, prediabetes, and diabetes in the US general population: Role of alkaline phosphatase.
美国普通人群尿 1,3-丁二烯代谢物与葡萄糖稳态、糖尿病前期和糖尿病的关联:碱性磷酸酶的作用。
  • DOI:
    10.1016/j.envres.2023.115355
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Ruyi Liang;Xiaobing Feng;Da Shi;Linling Yu;Meng Yang;Min Zhou;Yongfang Zhang;Bin Wang;Weihong Chen
  • 通讯作者:
    Weihong Chen
DNNTune: Automatic Benchmarking DNN Models for Mobile-cloud Computing
DNNTune:移动云计算 DNN 模型的自动基准测试
Depth Camera Based Fluid Reconstruction and its Solid-fluid Interaction
基于深度相机的流体重建及其固液相互作用

Xiaobing Feng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaobing Feng', 18)}}的其他基金

Novel Numerical Methods for Nonlinear Stochastic PDEs and High Dimensional Computation
非线性随机偏微分方程和高维计算的新数值方法
  • 批准号:
    2309626
  • 财政年份:
    2023
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Continuing Grant
Efficient Numerical Methods and Algorithms for Nonlinear Stochastic Partial Differential Equations
非线性随机偏微分方程的高效数值方法和算法
  • 批准号:
    2012414
  • 财政年份:
    2020
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
Novel numerical methods for fully nonlinear second order elliptic and parabolic Monge-Ampere and Hamilton-Jacobi-Bellman equations
全非线性二阶椭圆和抛物线 Monge-Ampere 和 Hamilton-Jacobi-Bellman 方程的新颖数值方法
  • 批准号:
    1620168
  • 财政年份:
    2016
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Continuing Grant
Novel Discontinuous Galerkin Finite Element Methods for Second Order Fully Nonlinear Equations and High Frequency Wave Equations
二阶完全非线性方程和高频波动方程的新型间断伽辽金有限元方法
  • 批准号:
    1318486
  • 财政年份:
    2013
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
Numerical Methods and Algorithms for Fully Nonlinear Second Order Evolution Equations with Applications
全非线性二阶演化方程的数值方法和算法及其应用
  • 批准号:
    1016173
  • 财政年份:
    2010
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Continuing Grant
Numerical Methods and Algorithms for Second Order Fully Nonlinear Partial Differential Equations
二阶完全非线性偏微分方程的数值方法和算法
  • 批准号:
    0710831
  • 财政年份:
    2007
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
International Workshop on Computational Methods in Geosciences
地球科学计算方法国际研讨会
  • 批准号:
    0715713
  • 财政年份:
    2007
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
Computational Challenges in Geometrical Flows: Numerical Methods and Analysis, Algorithmic Development and Software Engineering
几何流中的计算挑战:数值方法和分析、算法开发和软件工程
  • 批准号:
    0410266
  • 财政年份:
    2004
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
The Barrett Lectures May, 2001 "New Directions and Developments in Computational Mathematics
巴雷特讲座,2001 年 5 月“计算数学的新方向和发展
  • 批准号:
    0107159
  • 财政年份:
    2001
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant

相似国自然基金

曲面双曲守恒律方程的时间连续最近点方法
  • 批准号:
    12301530
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
季风边缘区:理解最近130ka以来中国半干旱—半湿润过渡带的环境变化
  • 批准号:
    42111530183
  • 批准年份:
    2021
  • 资助金额:
    40.00 万元
  • 项目类别:
    国际(地区)合作与交流项目
季风边缘区:理解最近130ka以来中国半干旱-半湿润过渡带的环境变化
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    39.9 万元
  • 项目类别:
最近两个冰期旋回东亚夏季风与西风相互作用的模拟研究
  • 批准号:
    42171152
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
季风边缘区:理解最近130ka以来中国半干旱—半湿润过渡带的环境变化
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Conference: Recent Developments and Future Directions in Nonlinear Dispersive and Wave Equations
会议:非线性色散和波动方程的最新进展和未来方向
  • 批准号:
    2328459
  • 财政年份:
    2023
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
Conference on Recent Developments in Continuum Mechanics and Partial Differential Equations
连续介质力学和偏微分方程最新发展会议
  • 批准号:
    1500939
  • 财政年份:
    2015
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
Conference on "Harmonic Analysis and Partial Differential Equations: Recent Developments and Future Directions"
“调和分析和偏微分方程:最新进展和未来方向”会议
  • 批准号:
    1402227
  • 财政年份:
    2014
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
Recent Developments in Higher Dimensional Algebraic Geometry Conference
高维代数几何会议的最新进展
  • 批准号:
    0515842
  • 财政年份:
    2006
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
Conference Symposium: Recent Developments in Neurobiology
会议研讨会:神经生物学的最新进展
  • 批准号:
    0424467
  • 财政年份:
    2004
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了