Numerical Methods and Algorithms for Fully Nonlinear Second Order Evolution Equations with Applications

全非线性二阶演化方程的数值方法和算法及其应用

基本信息

  • 批准号:
    1016173
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-15 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

Fully nonlinear second order partial differential equations (PDEs) are referred to a class of nonlinear second order PDEs which are nonlinear in (at least one) second order partial derivatives of unknown functions. Such a class of PDEs arise from many scientific and engineering fields including astrophysics, differential geometry, geostrophic fluid dynamics, image processing, kinetic theory, materials science, mass transportation, meteorology, and optimal control. They constitute the most difficult class of PDEs to analyze analytically and to approximate numerically. Building on the PI's recent success on developing convergent and efficient numerical methods and algorithms for fully nonlinear second order (time-independent) elliptic PDEs, the proposed research project intends to carry out a comprehensive and systematic study of numerical methods and algorithms for fully nonlinear second order (time-dependent) evolution PDEs. The objectives of the proposed research include (i) to develop the vanishing moment method and the moment solution theory for fully nonlinear second order evolution PDEs, (ii) to develop fully discrete Galerkin type numerical methods (e.g. finite element methods, mixed finite element methods, spectral and discontinuous Galerkin methods) for fully nonlinear second order evolution PDEs based on the vanishing moment methodology, (iii) to apply and/or to adapt the developed numerical methods to a number of emerging application problems which are governed by fully nonlinear second order PDEs, (iv) to develop computer codes for implementing the proposed numerical methods. As numerical approximations of fully nonlinear second order evolution PDEs is an untouched sub-area within the numerical PDEs and those PDEs arise from many important applications in astrophysics, differential geometry, geostrophic fluid dynamics, image processing, kinetic theory, materials science, mass transportation, meteorology, and optimal control, the completion of the proposed research project is expected to have a profound impact on solving this class of PDEs and on providing the much needed capability and enabling tools for solving a range of important application problems which are governed by fully nonlinear second order PDEs. As a by-product, the moment solution theory is expected to give some insights to our understanding of the viscosity solution theory, and might be very likely to provide a logical and natural generalization and extension for the viscosity solution theory which is not natural and neither practical from the computational point of view. The educational component of this project is to engage and train graduate students in developing necessary applied and computational mathematics knowledge and skills so that they can pursue a successful career in science and engineering in the future.
完全非线性二阶偏微分方程(PDE)是指 一类非线性二阶偏微分方程,其在(至少一个)秒内是非线性的 未知函数的阶偏导数这样一类偏微分方程的产生, 科学和工程领域,包括天体物理学、微分几何学、地转 流体动力学,图像处理,动力学理论,材料科学,质量运输, 气象学和最优控制它们构成了最困难的一类偏微分方程, 分析和数值近似。在PI最近成功的基础上, 开发收敛和有效的数值方法和算法,完全非线性 二阶(时间无关)椭圆偏微分方程,拟议的研究项目打算 对数值方法和算法进行全面系统的研究 对于完全非线性二阶(时间相关)演化偏微分方程。的目标 建议的研究包括(i)发展消失矩方法和矩解 理论完全非线性二阶演化偏微分方程,(ii)发展完全离散 Galerkin型数值方法(例如有限元方法、混合有限元方法, 完全非线性二阶发展偏微分方程谱方法和间断Galerkin方法 基于消失矩方法,(iii)应用和/或调整开发的数值 方法,以一些新兴的应用问题,这是由完全非线性第二 为了偏微分方程,(四)开发计算机代码实现建议的数值方法。 作为完全非线性二阶发展偏微分方程的数值逼近, 子区域内的数值偏微分方程和那些偏微分方程出现了许多重要的应用, 天体物理学,微分几何,地转流体动力学,图像处理,动力学理论, 材料科学,大众运输,气象学,和最佳控制,完成了 拟议的研究项目预计将对解决这类偏微分方程产生深远的影响, 为解决一系列重要应用提供急需的能力和支持工具 这是由完全非线性二阶偏微分方程的问题。作为副产品, 溶液理论有望为我们理解粘度溶液提供一些启示 理论,并可能很有可能提供一个逻辑和自然的概括和扩展 对于粘性溶液理论,从计算的角度来看, 的观点该项目的教育部分是吸引和培训研究生参与 发展必要的应用和计算数学知识和技能,使他们能够 在未来的科学和工程事业中取得成功。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaobing Feng其他文献

DNNTune: Automatic Benchmarking DNN Models for Mobile-cloud Computing
DNNTune:移动云计算 DNN 模型的自动基准测试
Associations of urinary 1,3-butadiene metabolite with glucose homeostasis, prediabetes, and diabetes in the US general population: Role of alkaline phosphatase.
美国普通人群尿 1,3-丁二烯代谢物与葡萄糖稳态、糖尿病前期和糖尿病的关联:碱性磷酸酶的作用。
  • DOI:
    10.1016/j.envres.2023.115355
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Ruyi Liang;Xiaobing Feng;Da Shi;Linling Yu;Meng Yang;Min Zhou;Yongfang Zhang;Bin Wang;Weihong Chen
  • 通讯作者:
    Weihong Chen
Depth Camera Based Fluid Reconstruction and its Solid-fluid Interaction
基于深度相机的流体重建及其固液相互作用
CloudRaid: Detecting Distributed Concurrency Bugs via Log Mining and Enhancement
CloudRaid:通过日志挖掘和增强检测分布式并发错误
  • DOI:
    10.1109/tse.2020.2999364
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Jie Lu;Feng Li;Chen Liu;Lian Li;Xiaobing Feng;Jingling Xue
  • 通讯作者:
    Jingling Xue
Cascade Wide Activation Multi-Scale Networks for Single Image Super-Resolution
用于单图像超分辨率的级联宽激活多尺度网络

Xiaobing Feng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaobing Feng', 18)}}的其他基金

Novel Numerical Methods for Nonlinear Stochastic PDEs and High Dimensional Computation
非线性随机偏微分方程和高维计算的新数值方法
  • 批准号:
    2309626
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Efficient Numerical Methods and Algorithms for Nonlinear Stochastic Partial Differential Equations
非线性随机偏微分方程的高效数值方法和算法
  • 批准号:
    2012414
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Novel numerical methods for fully nonlinear second order elliptic and parabolic Monge-Ampere and Hamilton-Jacobi-Bellman equations
全非线性二阶椭圆和抛物线 Monge-Ampere 和 Hamilton-Jacobi-Bellman 方程的新颖数值方法
  • 批准号:
    1620168
  • 财政年份:
    2016
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Novel Discontinuous Galerkin Finite Element Methods for Second Order Fully Nonlinear Equations and High Frequency Wave Equations
二阶完全非线性方程和高频波动方程的新型间断伽辽金有限元方法
  • 批准号:
    1318486
  • 财政年份:
    2013
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Conference: Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations
会议:偏微分方程不连续伽辽金有限元方法的最新进展
  • 批准号:
    1203237
  • 财政年份:
    2012
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Numerical Methods and Algorithms for Second Order Fully Nonlinear Partial Differential Equations
二阶完全非线性偏微分方程的数值方法和算法
  • 批准号:
    0710831
  • 财政年份:
    2007
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
International Workshop on Computational Methods in Geosciences
地球科学计算方法国际研讨会
  • 批准号:
    0715713
  • 财政年份:
    2007
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Computational Challenges in Geometrical Flows: Numerical Methods and Analysis, Algorithmic Development and Software Engineering
几何流中的计算挑战:数值方法和分析、算法开发和软件工程
  • 批准号:
    0410266
  • 财政年份:
    2004
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
The Barrett Lectures May, 2001 "New Directions and Developments in Computational Mathematics
巴雷特讲座,2001 年 5 月“计算数学的新方向和发展
  • 批准号:
    0107159
  • 财政年份:
    2001
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Numerical Methods and Adaptive Algorithms for Sixth-Order Phase Field Models
合作研究:六阶相场模型的数值方法和自适应算法
  • 批准号:
    2110774
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Algorithms and Numerical Methods for Optimization with Partial Differential Equation Constraints
偏微分方程约束优化的算法和数值方法
  • 批准号:
    2110263
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Numerical Methods and Adaptive Algorithms for Sixth-Order Phase Field Models
合作研究:六阶相场模型的数值方法和自适应算法
  • 批准号:
    2110768
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Efficient Numerical Methods and Algorithms for Nonlinear Stochastic Partial Differential Equations
非线性随机偏微分方程的高效数值方法和算法
  • 批准号:
    2012414
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Study on algorithms of numerical methods for large scale nonlinear optimization problems and their implementation
大规模非线性优化问题数值方法算法研究及其实现
  • 批准号:
    20K11698
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of time-parallel numerical integration algorithms using probabilistic methods with applications to magnetic fusion plasma.
使用概率方法开发时间并行数值积分算法并应用于磁聚变等离子体。
  • 批准号:
    2271223
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Studentship
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
  • 批准号:
    RGPIN-2015-05648
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
  • 批准号:
    RGPIN-2015-05648
  • 财政年份:
    2018
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
  • 批准号:
    RGPIN-2015-05648
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Partial Differential Equations: Algorithms and Software on Innovative Computer Architectures
偏微分方程的数值方法:创新计算机架构的算法和软件
  • 批准号:
    RGPIN-2015-05648
  • 财政年份:
    2016
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了