Fast spectral methods and their applications

快速光谱方法及其应用

基本信息

  • 批准号:
    1620262
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Spectral methods are a class of techniques used in applied mathematics and scientific computing to numerically solve certain differential equations. Solutions for many problems of interest exhibit local singular behaviors which contaminate the accuracy of usual spectral/spectral-element methods. Many complex systems exhibiting anomalous diffusion can be better modeled with fractional partial differential equations, which are numerically challenging due to their nonlocal nature. Spectral/spectral-element methods usually lead to dense or block dense and ill-conditioned matrices that are difficult and expensive to solve. The focus of this project is to design, analyze, and implement fast and robust spectral methods for a class of numerically challenging problems. The numerical simulations will enable us to handle challenging problems having stringent accuracy and/or memory requirements with a reasonable cost in CPU and turn-around time, and will contribute to a better understanding of some fundamental issues in materials science and fluid dynamics through fast and accurate numerical simulations. Another important goal of this project is to engage graduate students in learning necessary skills of computational and applied mathematics so that they can pursue a successful career in sciences and engineering.The PI will address these issues with the following tasks: (i) develop effective Muntz Galerkin method to deal with problems with singular solutions; (ii) develop efficient and accurate spectral methods for solving a class of fractional differential equations by constructing special basis functions with generalized Jacobi and Laguerre functions, and derive corresponding error estimates; (iii) develop direct structured solvers with optimal computational complexity for dense or block dense linear systems arising from spectral/spectral-element discretization; and (iv) develop efficient spectral algorithms for solving the phase-field model of electro-magnetic couplings in ferroelectric and multiferroic nanostructures. The research will result in fast and stable direct spectral/spectral-element solvers for a class of partial differential equations as well as fast Jacobi/spherical harmonic transforms. This project will also result in a set of computational modules to efficiently and accurately solve the coupled nonlinear system for the phase-field model of electro-magnetic couplings in ferroelectric and multiferroic nanostructures.
谱方法是应用数学和科学计算中用于数值求解某些微分方程的一类技术。许多问题的解表现出局部奇异性,这影响了通常的光谱/谱元方法的准确性。许多表现出异常扩散的复杂系统可以用分数阶偏微分方程更好地建模,由于它们的非局部性质,这在数值上具有挑战性。光谱/谱元方法通常导致密集或块密集和病态矩阵,求解困难且昂贵。这个项目的重点是设计、分析和实现快速和鲁棒的谱方法来解决一类具有数值挑战性的问题。数值模拟将使我们能够以合理的CPU成本和周转时间处理具有严格精度和/或内存要求的挑战性问题,并将有助于通过快速准确的数值模拟更好地理解材料科学和流体动力学中的一些基本问题。该项目的另一个重要目标是让研究生学习计算和应用数学的必要技能,以便他们能够在科学和工程领域取得成功。PI将通过以下任务来解决这些问题:(i)开发有效的Muntz Galerkin方法来处理奇异解问题;(ii)通过构造具有广义Jacobi和Laguerre函数的特殊基函数,开发出求解一类分数阶微分方程的高效、准确的谱方法,并推导出相应的误差估计;(iii)开发具有最佳计算复杂度的直接结构化求解器,用于由谱/谱元离散化产生的密集或块密集线性系统;(iv)开发有效的光谱算法来求解铁电和多铁纳米结构中电磁耦合的相场模型。该研究将产生快速、稳定的一类偏微分方程的直接谱/谱元求解器,以及快速的雅可比/球谐变换。本项目还将为铁电和多铁纳米结构中电磁耦合相场模型的耦合非线性系统提供一套高效、精确求解的计算模块。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jie Shen其他文献

Incidental Detection of Ossifying Fibroma of the Frontal Sinus on 99mTc-MDP Bone Scan.
99mTc-MDP 骨扫描偶然检测到额窦骨化纤维瘤。
  • DOI:
    10.1097/rlu.0000000000001029
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Ruiguo Zhang;Jun;S. Xia;Jie Shen;Jian Tan
  • 通讯作者:
    Jian Tan
Correlation between the methylation of SULF2 and WRN promoter and the irinotecan chemosensitivity in gastric cancer
SULF2和WRN启动子甲基化与胃癌伊立替康化疗敏感性的相关性
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Lin Wang;Li Xie;Jun Wang;Jie Shen;Baorui Liu
  • 通讯作者:
    Baorui Liu
Cysteine 397 plays important roles in the folding of the neuron-restricted silencer factor/RE1-silencing transcription factor.
半胱氨酸 397 在神经元限制性沉默因子/RE1 沉默转录因子的折叠中发挥重要作用。
Flexural properties of wooden nail friction welding of laminated timber
层合木木钉摩擦焊的弯曲性能
  • DOI:
    10.15376/biores.18.1.1166-1176
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Xudong Zhu;Yingying Xue;Pengfei Qi;Qian Lan;Liang Qian;Jie Shen;Ying Gao;Jiajia Li;Changtong Mei;Shengcai Li
  • 通讯作者:
    Shengcai Li
18 – Esophageal Carcinoma
18 – 食道癌
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Q. Zhan;Luhua Wang;Yong;Yun;Jing Jiang;Jing Fan;Jing;Jie Shen
  • 通讯作者:
    Jie Shen

Jie Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jie Shen', 18)}}的其他基金

CAREER: Robustness, Active Learning, Sparsity, and Fairness in Classification
职业:分类中的鲁棒性、主动学习、稀疏性和公平性
  • 批准号:
    2239376
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Design and Analysis of Highly Efficient Algorithms for Complex Nonlinear Systems
复杂非线性系统高效算法的设计与分析
  • 批准号:
    2012585
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
CRII: III: Efficient and Robust Statistical Estimation from Nonlinear Compressed Measurements
CRII:III:通过非线性压缩测量进行高效且稳健的统计估计
  • 批准号:
    1948133
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
International Conference on Current Trends and Challenges in Numerical Solution of Partial Differential Equations
偏微分方程数值解的当前趋势和挑战国际会议
  • 批准号:
    1722535
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: Efficient, Stable and Accurate Numerical Algorithms for a class of Gradient Flow Systems and their Applications
合作研究:一类梯度流系统高效、稳定、准确的数值算法及其应用
  • 批准号:
    1720440
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
I-Corps: Cell Failure Analysis of Lithium-ion Batteries
I-Corps:锂离子电池的电池失效分析
  • 批准号:
    1445355
  • 财政年份:
    2014
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: Phase-field models, algorithms and simulations for multiphase complex fluids
合作研究:多相复杂流体的相场模型、算法和模拟
  • 批准号:
    1419053
  • 财政年份:
    2014
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Fast Spectral Methods and their Applications
快速谱方法及其应用
  • 批准号:
    1217066
  • 财政年份:
    2012
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Fast Spectral-Galerkin Methods and their Applications
快速谱伽辽金方法及其应用
  • 批准号:
    0915066
  • 财政年份:
    2009
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of an X-Ray Micro-Computed Tomography System for Evaluating Crack Evolution and Failure Characterization of Engineering Materials
MRI:获取 X 射线微计算机断层扫描系统,用于评估工程材料的裂纹演化和失效特征
  • 批准号:
    0721625
  • 财政年份:
    2007
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant

相似国自然基金

一种新型的PET/spectral-CT/CT三模态图像引导的小动物放射治疗平台的设计与关键技术研究
  • 批准号:
    LTGY23H220001
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
关于spectral集和spectral拓扑若干问题研究
  • 批准号:
    11661057
  • 批准年份:
    2016
  • 资助金额:
    36.0 万元
  • 项目类别:
    地区科学基金项目
S3AGA样本(Spitzer-SDSS Spectral Atlas of Galaxies and AGNs)及其AGN研究
  • 批准号:
    11473055
  • 批准年份:
    2014
  • 资助金额:
    95.0 万元
  • 项目类别:
    面上项目
低杂波加热的全波解TORIC数值模拟以及动理论GeFi粒子模拟
  • 批准号:
    11105178
  • 批准年份:
    2011
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
  • 批准号:
    EP/Y002113/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Research Grant
Development of cell-type identification methods based on visible and near-infrared spectral image
基于可见光和近红外光谱图像的细胞类型识别方法的发展
  • 批准号:
    23H03766
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
An expanded 75-color panel of Pdots for spectral multiplexing
用于光谱复用的扩展 75 色 Pdot 面板
  • 批准号:
    10761598
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
Complex Methods in Spectral and Scattering Problems
光谱和散射问题的复杂方法
  • 批准号:
    2244801
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Significant expansion of spectral multiplexing in PCR
PCR 中光谱多重功能的显着扩展
  • 批准号:
    10698894
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
Unsupervised Deep Photon-Counting Computed Tomography Reconstruction for Human Extremity Imaging
用于人体肢体成像的无监督深度光子计数计算机断层扫描重建
  • 批准号:
    10718303
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
Cytosolic DNA, Telomeres/Subtelomeres, and Epigenetics: A Longitudinal Twin Study to Assess the Role of Genetics and Environment on their Frequency and Inter-relationships
细胞质 DNA、端粒/亚端粒和表观遗传学:评估遗传和环境对其频率和相互关系的作用的纵向双胞胎研究
  • 批准号:
    10722866
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
1 mm resolution single-photon spectral imaging of the brain
1 毫米分辨率单光子大脑光谱成像
  • 批准号:
    10724955
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
CRCNS: Online optimization for probing high-level auditory representations
CRCNS:用于探测高级听觉表征的在线优化
  • 批准号:
    10831120
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
A mosaic Down syndrome model system comparing isogenic trisomic/disomic cells to unmask trisomy-21 related genomic, epigenomic, and senescence changes acquired across the lifespan
镶嵌唐氏综合症模型系统比较同基因三体/二体细胞,以揭示在整个生命周期中获得的与 21 三体相关的基因组、表观基因组和衰老变化
  • 批准号:
    10656746
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了