SCH: INT: Collaborative Research: Computer Guided Laparoscopy Training

SCH:INT:协作研究:计算机引导腹腔镜检查培训

基本信息

  • 批准号:
    1622589
  • 负责人:
  • 金额:
    $ 111.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2021-11-30
  • 项目状态:
    已结题

项目摘要

Laparoscopic surgery, when performed by a well-trained surgeon, is a remarkably effective procedure that minimizes complications associated with open incisions, blood loss and post-operative pain. It also reduces recovery time. However, the procedure is more challenging than conventional surgery due to restricted vision, hand-eye coordination problems, limited working space, and lack of tactile sensation. Therefore, effective training and guidance methods are needed to minimize the potential risks inherent in such procedures. The goal of this project is to develop and validate techniques for computer-guided laparoscopic surgical training in a simulated, non-patient based environment. A computer-aided surgical trainer (CAST) will physically guide trainees' instruments during surgical skills practice sessions by utilizing assistive force with augmented reality displays. Guided training will be validated through a pilot experimental study, in which the expertise of computer-guided trainees will be compared to that of instructor-guided trainees. Data such as the time it takes a trainee to execute a particular surgical task, how accurate he or she is, etc., will be collected to analyze task performance precisely and objectively. New scientific methods for motion trajectory planning and path following using assistive force and augmented reality techniques will result from this work. It is anticipated that computer-guided practice will speed up learning and reinforce appropriate techniques, ultimately, leading to better surgical outcomes and improved patient safety. The CAST system should serve as a sophisticated, yet still low-cost, training solution for fundamental medical skills training. The specific objectives are a) to refine and implement a memory- and time-efficient hybrid offline-online optimal path planner for computer-guided training of basic laparoscopic skills. In this task, collision-free trajectory planning methods (such as those used in robotics) will be generated by incorporating offline-online hybrid techniques with memory and computational time efficient path repository. Thus, basic laparoscopic tasks can be planned and guided automatically, using haptic force and augmented reality visualization; b) to design and implement an intelligent, adaptive guidance controller for surgical space navigation, where a fuzzy logic and machine learning-based methods will be developed that will take into account trainees' skill levels so that optimal amount of training assistance can be provided in mastering surgical tasks; c) to design and implement visual guidance techniques through augmented reality overlays that provide 'navigational' cues, supplementing force-based control of surgical instruments; and d) to validate guided training through a pilot study. In this task, trainees' performance using computer guidance methods will be compared, using statistical analysis, to that of unguided trainees. The principal investigators will aim to increase the participation of undergraduate students, and in particular of underrepresented groups, through collaboration with the well-established programs at both PIs' institutions and through sponsorship of senior projects and independent study courses.
腹腔镜手术由训练有素的外科医生进行时,是一种非常有效的手术,可最大限度地减少与开放切口、失血和术后疼痛相关的并发症。它还缩短了恢复时间。然而,由于视力受限、手眼协调问题、工作空间有限和缺乏触觉,该手术比传统手术更具挑战性。因此,需要有效的培训和指导方法,以尽量减少此类程序固有的潜在风险。这个项目的目标是开发和验证技术,计算机引导腹腔镜手术培训在一个模拟的,非病人为基础的环境。计算机辅助手术培训师(CAST)将在手术技能练习期间通过使用具有增强现实显示的辅助力量来实际指导学员的器械。将通过一项试验性研究验证指导培训,在这项研究中,将对计算机指导的受训者的专门知识与计算机指导的受训者的专门知识进行比较。数据,例如学员执行特定手术任务所需的时间、他或她的准确性等,将被收集,以准确和客观地分析任务绩效。这项工作将产生使用辅助力量和增强现实技术进行运动轨迹规划和路径跟踪的新科学方法。预计计算机引导的实践将加快学习和加强适当的技术,最终导致更好的手术结果和提高患者的安全性。CAST系统应作为一个先进的,但仍然是低成本的,基本医疗技能培训的培训解决方案。 具体目标是:a)改进和实施一种记忆和时间效率高的混合离线-在线最佳路径规划器,用于基本腹腔镜技能的计算机引导培训。在这项任务中,无碰撞轨迹规划方法(如机器人中使用的)将通过将离线-在线混合技术与内存和计算时间有效的路径存储库相结合来生成。B)设计和实现用于外科手术空间导航的智能自适应引导控制器,其中将开发基于模糊逻辑和机器学习的方法,其将考虑受训者的技能水平,使得可以在掌握外科手术任务时提供最佳量的训练辅助; c)通过增强现实覆盖设计和实施视觉引导技术,提供“导航”提示,补充基于力的手术器械控制; d)通过试点研究验证引导培训。在这项任务中,学员使用计算机指导方法的表现将进行比较,使用统计分析,以无指导的学员。主要研究人员将致力于通过与两个PI机构的成熟项目合作以及通过赞助高级项目和独立学习课程,增加本科生的参与,特别是代表性不足的群体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jerzy Rozenblit其他文献

A multiresolution approach for optimal defense against random attacks
The Wireless Data Acquisition System for Flood Control and Water Management
  • DOI:
    10.1016/s1474-6670(17)39341-2
  • 发表时间:
    2000-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ryszard Klempous;Jan Nikodem;Jerzy Rozenblit
  • 通讯作者:
    Jerzy Rozenblit
Knowledge elicitation for performance assessment in a computerized surgical training system
  • DOI:
    10.1016/j.asoc.2011.01.041
  • 发表时间:
    2011-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mario Riojas;Chuan Feng;Allan Hamilton;Jerzy Rozenblit
  • 通讯作者:
    Jerzy Rozenblit

Jerzy Rozenblit的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jerzy Rozenblit', 18)}}的其他基金

Collaborative: Smart Health in the AI and COVID Era
协作:人工智能和新冠时代的智能健康
  • 批准号:
    2120091
  • 财政年份:
    2021
  • 资助金额:
    $ 111.89万
  • 项目类别:
    Standard Grant
TWC: Small: Time-Centric Modeling of Correct Behaviors for Efficient Non-intrusive Runtime Detection of Unauthorized System Actions
TWC:小型:以时间为中心的正确行为建模,用于对未经授权的系统操作进行有效的非侵入式运行时检测
  • 批准号:
    1615890
  • 财政年份:
    2016
  • 资助金额:
    $ 111.89万
  • 项目类别:
    Standard Grant
Hardware and Software Co-Design for High Performance Systems
高性能系统的硬件和软件协同设计
  • 批准号:
    9554561
  • 财政年份:
    1995
  • 资助金额:
    $ 111.89万
  • 项目类别:
    Continuing Grant
Engineering Research Equipment Grant: Development of Packaging Design Support Environment
工程研究设备补助金:包装设计支持环境的开发
  • 批准号:
    9212345
  • 财政年份:
    1992
  • 资助金额:
    $ 111.89万
  • 项目类别:
    Standard Grant
COMPUTER EQUIPMENT RESEARCH PROPOSAL
计算机设备研究计划
  • 批准号:
    8808096
  • 财政年份:
    1988
  • 资助金额:
    $ 111.89万
  • 项目类别:
    Standard Grant

相似国自然基金

内源性逆转录病毒MER65-int调控人类胎 盘发育与子宫内膜重塑的功能研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
  • 批准号:
    32370939
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
  • 批准号:
    LQ22H160033
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
  • 批准号:
    81903680
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
  • 批准号:
    31800624
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
  • 批准号:
    81371698
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
  • 批准号:
    81100439
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2343183
  • 财政年份:
    2023
  • 资助金额:
    $ 111.89万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
  • 批准号:
    2313481
  • 财政年份:
    2022
  • 资助金额:
    $ 111.89万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
  • 批准号:
    10573225
  • 财政年份:
    2021
  • 资助金额:
    $ 111.89万
  • 项目类别:
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
  • 批准号:
    10392429
  • 财政年份:
    2021
  • 资助金额:
    $ 111.89万
  • 项目类别:
SCH: INT: Collaborative Research: Using Multi-Stage Learning to Prioritize Mental Health
SCH:INT:协作研究:利用多阶段学习优先考虑心理健康
  • 批准号:
    2124270
  • 财政年份:
    2021
  • 资助金额:
    $ 111.89万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
  • 批准号:
    2014554
  • 财政年份:
    2020
  • 资助金额:
    $ 111.89万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
  • 批准号:
    2014552
  • 财政年份:
    2020
  • 资助金额:
    $ 111.89万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2019389
  • 财政年份:
    2020
  • 资助金额:
    $ 111.89万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2013651
  • 财政年份:
    2020
  • 资助金额:
    $ 111.89万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2013122
  • 财政年份:
    2020
  • 资助金额:
    $ 111.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了