DMREF: Collaborative Research: Accelerated discovery of chalcogenides for enhanced functionality in magnetotransport, multiorbital superconductivity, and topological applications
DMREF:合作研究:加速发现硫属化物以增强磁输运、多轨道超导和拓扑应用的功能
基本信息
- 批准号:1629068
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-10-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL DESCRIPTION: Over the past decades, the discovery, understanding and applications of new solid-state materials have played a crucial role in modern technology. However, devices based on silicon have hit a bottleneck in terms of the amount of information that can be packed in nano-dimensions and still avoid the complications due to heating. This project will develop new paradigms, new principles and new classes of materials to design the next generation of multifunctional devices. The materials will be drawn from the heavy transition metal dichalcogenides (TMDCs) that combine topology and magnetism together to yield unusual magneto-transport properties. There is the potential to develop topological field effect transistors and thermomagnetic spintronic devices. The specific goals of this project are to synthesize TMDCs in bulk and thin film form, to explore their electronic properties, and compare with theoretical calculations. A tight-knit feedback loop where theory guides experiments and experiments inform theory will allow the team to design materials with the desired functionality. The projects will have multiple impacts on a broader scale through (i) synthesis of new materials that can be dispersed to the condensed matter community; (ii) creation and dissemination of modeling tools, algorithms, and software for computer-aided materials design; (iii) generation of web-based access and dissemination of materials-specific data toward enhancement of infrastructure for materials research; (iv) creation of a new online course and comprehensive training of graduate and undergraduate students across the breadth of topics (chemistry of materials, complementary spectroscopies, and multi-scale theoretical modeling; (v) coordination with local museums and schools to bring the excitement of new quantum materials to the public and the next generation of scientists; and (vi) and a new face to physics with three women in leadership positions in this team.TECHNICAL DESCRIPTION: The comparable energy scales of spin-orbit coupling and Coulomb correlations and the multi-pronged tunability by chemistry, electric field and strain afforded by van-der-Waals coupled layered structures of TMDCs, opens up an entirely new and rich parameter regime not available previously. The goal of this project is to explore TMDCs through a combination of synthesis, characterization and theoretical modeling and to determine a pathway for predicting and controlling the magneto-transport properties of these materials. The project team consists of PIs with complementary skills. The team is synergistic with expertise in material synthesis in bulk and thin film form, ability to perform spectroscopy in real-and momentum space, and advanced theoretical and computational methods. Combined with expertise to calculate the inhomogeneous response for a single realization of disorder, the goal is to generate universal phase diagrams in multi-parameter space. By following both materials- and computation- inspired routes, accelerated discovery of materials with desired optimized functionalities by an iterative feedback loop is inevitable. Some of the expected major breakthroughs from this project are: (1) Discovery and optimization of novel electronic phases with unusual magneto-transport properties. (2) Discovery of topologically protected surface states in the background of textured magnetic phases, revealing phenomena richer than topological band insulators. (3) Emergence of new paradigms for superconductivity in insulators or multi-band low density TMDCs, beyond the standard BCS theory of a Fermi surface instability. (4) The detection of spatially periodically modulated superconducting phases in strongly spin-orbit coupled systems. (5) Synthesis of new and optimization of existing materials with desired functionalities by tuning chemistry, strain and electric field gating.
非技术描述:在过去的几十年里,新型固态材料的发现、理解和应用在现代技术中发挥了至关重要的作用。然而,基于硅的设备在纳米尺寸的信息量方面遇到了瓶颈,并且仍然避免了由于加热而导致的复杂情况。该项目将开发新的范例、新的原理和新的材料类别,以设计下一代多功能设备。这些材料将从重金属过渡金属二卤化物(TMDCs)中提取,TMDCs将拓扑结构和磁性结合在一起,产生不同寻常的磁性传输特性。有可能开发拓扑场效应晶体管和热磁自旋电子器件。本项目的具体目标是合成体相和薄膜相的TMDCs,探索它们的电子性质,并与理论计算进行比较。一个严密的反馈回路,其中理论指导实验,实验告知理论,这将允许团队设计具有所需功能的材料。这些项目将通过以下方式在更广泛的范围内产生多重影响:(1)合成可分散到凝聚态社区的新材料;(2)创建和传播用于计算机辅助材料设计的建模工具、算法和软件;(3)生成基于网络的访问和传播特定材料的数据,以加强材料研究的基础设施;(4)创建一门新的在线课程,对研究生和本科生进行跨学科(材料化学、互补光谱学和多尺度理论建模)的综合培训;(V)与当地博物馆和学校合作,为公众和下一代科学家带来新量子材料的兴奋;以及(Vi)与三名女性在这个团队中担任领导职务的物理学的新面孔。技术描述:TMDCs的自旋轨道耦合和库仑关联的可比能量尺度,以及由van-der-Waals耦合的层状结构提供的化学、电场和应变的多管齐下的可调性,开启了一种全新的、丰富的参数制度,这是以前没有过的。本项目的目标是通过合成、表征和理论模拟相结合的方法来探索TMDCs,并确定预测和控制这些材料的磁输运性质的途径。项目团队由具有互补技能的PI组成。该团队在块体和薄膜形式的材料合成方面拥有专业知识,能够在真实空间和动量空间进行光谱分析,并拥有先进的理论和计算方法。结合计算单个无序实现的非均匀响应的专业知识,目标是在多参数空间中生成通用相图。通过遵循材料和计算启发的路线,通过迭代反馈循环加速发现具有所需优化功能的材料是不可避免的。该项目有望取得的一些重大突破包括:(1)发现和优化具有特殊磁输运性质的新型电子相。(2)在织构磁相的背景下发现了受拓扑保护的表面态,揭示了比拓扑带状绝缘体更丰富的现象。(3)绝缘体或多带低密度TMDDC超导电性的新范式的出现,超越了标准的费米表面不稳定性BCS理论。(4)强自旋轨道耦合系统中空间周期调制超导相的探测。(5)通过调整化学、应变和电场门控来合成和优化具有所需功能的新材料和现有材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vidya Madhavan其他文献
Plasmons at the surface
表面等离子体激元
- DOI:
10.1038/nnano.2013.157 - 发表时间:
2013-08-05 - 期刊:
- 影响因子:34.900
- 作者:
Yoshinori Okada;Vidya Madhavan - 通讯作者:
Vidya Madhavan
Floquet–Bloch manipulation of the Dirac gap in a topological antiferromagnet
拓扑反铁磁体中狄拉克能隙的 Floquet-Bloch 操纵
- DOI:
10.1038/s41567-024-02769-6 - 发表时间:
2025-01-21 - 期刊:
- 影响因子:18.400
- 作者:
Nina Bielinski;Rajas Chari;Julian May-Mann;Soyeun Kim;Jack Zwettler;Yujun Deng;Anuva Aishwarya;Subhajit Roychowdhury;Chandra Shekhar;Makoto Hashimoto;Donghui Lu;Jiaqiang Yan;Claudia Felser;Vidya Madhavan;Zhi-Xun Shen;Taylor L. Hughes;Fahad Mahmood - 通讯作者:
Fahad Mahmood
Magnetic-field-sensitive charge density waves in the superconductor UTe2
超导体 UTe2 中对磁场敏感的电荷密度波
- DOI:
10.1038/s41586-023-06005-8 - 发表时间:
2023-06-28 - 期刊:
- 影响因子:48.500
- 作者:
Anuva Aishwarya;Julian May-Mann;Arjun Raghavan;Laimei Nie;Marisa Romanelli;Sheng Ran;Shanta R. Saha;Johnpierre Paglione;Nicholas P. Butch;Eduardo Fradkin;Vidya Madhavan - 通讯作者:
Vidya Madhavan
PP-116 Profile of occult hepatitis B virus infection in an area with intermediate prevalence of HBV infection
- DOI:
10.1016/s1201-9712(09)60510-5 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:
- 作者:
Shanmugam Saravanan;Vijayakumar Velu;Vidya Madhavan;Kailapuri G. Murugavel;Pachamuthu Balakrishnan;Sunil S. Solomon;Nagalingeswaran Kumarasamy;Suniti Solomon;Sadras P. Thyagarajan - 通讯作者:
Sadras P. Thyagarajan
Spin-selective tunneling from nanowires of the candidate topological Kondo insulator SmB6
候选拓扑近藤绝缘体 SmB6 纳米线的自旋选择性隧道效应
- DOI:
10.1126/science.abj8765 - 发表时间:
2022-09 - 期刊:
- 影响因子:56.9
- 作者:
Anuva Aishwarya;Zhuozhen Cai;Arjun Raghavan;Marisa Romanelli;Xiaoyu Wang;Xu Li;G. D. Gu;Mark Hirsbrunner;Taylor Hughes;刘飞;Lin Jiao;Vidya Madhavan - 通讯作者:
Vidya Madhavan
Vidya Madhavan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vidya Madhavan', 18)}}的其他基金
Quasiparticles in Mott Insulators, Strange Metals and Spin liquids probed by Low Temperature Spectroscopic-Imaging Scanning Tunneling Microscopy
通过低温光谱成像扫描隧道显微镜探测莫特绝缘体、奇异金属和自旋液体中的准粒子
- 批准号:
2003784 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: Strain Based Devices for Switches and Memory Applications
合作研究:用于开关和存储器应用的基于应变的器件
- 批准号:
1711875 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Nanoscale Studies of Surface Doping Effects and Superconductivity in Fe-based Superconductors and Iridates
铁基超导体和铱酸盐的表面掺杂效应和超导性的纳米研究
- 批准号:
1610143 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Development and nanoscale characterization of back-gated topological devices
背栅拓扑器件的开发和纳米级表征
- 批准号:
1630104 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Emergent Physics in Correlated, Spin-orbit Coupled Materials
相关自旋轨道耦合材料中的新兴物理
- 批准号:
1621145 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER Workshop for Materials Scientists & Engineers
材料科学家职业研讨会
- 批准号:
1340410 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Emergent Physics in Correlated, Spin-orbit Coupled Materials
相关自旋轨道耦合材料中的新兴物理
- 批准号:
1305647 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Development and nanoscale characterization of back-gated topological devices
背栅拓扑器件的开发和纳米级表征
- 批准号:
1232105 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Spin-Spin Interactions, Magnetic Order and Low-Dimensional Effects in Magnetic Semiconductors: Education and Research at the Nanoscale with Spin-Polarized STM
职业:磁性半导体中的自旋-自旋相互作用、磁序和低维效应:自旋极化 STM 的纳米级教育和研究
- 批准号:
0645299 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
IMR: Acquisition of Cryogenic STM Head and Electronics for Education and Research in Spintronic Materials
IMR:收购低温 STM 头和电子设备,用于自旋电子材料的教育和研究
- 批准号:
0414650 - 财政年份:2004
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
- 批准号:
2323936 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant