EAGER: Ultra-High-Performance Terahertz Detection Exploiting Super-Steep-Subthreshold-Slope (S4)-FinFETs
EAGER:利用超陡亚阈值斜率 (S4)-FinFET 的超高性能太赫兹检测
基本信息
- 批准号:1644592
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the past decades, the terahertz frequency regime (0.1-30 THz) has become the subject of much attention due to its wide range of applications in diverse areas such as astronomy, imaging, spectroscopy, communications, and so on. Although significant progress has been recently achieved, there is still a need for semiconductor devices efficiently operating at these frequencies. This project will provide in a short-timeframe an answer for a long-standing problem of the terahertz community: How to achieve very sensitive terahertz detection in foundry-friendly, large-scale manufacturable, solid-state devices at room temperature. To achieve this goal, the proposed work aims to exploit Super-Steep-Subthreshold-Slope Fin-based Field Effect Transistors as efficient terahertz detectors. This project will be the first to perform research on terahertz applications of this emerging transistor technology and is expected to transform the terahertz technology landscape in the coming years. Indeed, the expectation is to provide more than two orders of performance gain in terahertz detection, which is of immense interest to the terahertz community. More generally, harvesting the unique properties of emerging transistor technologies for viable real-world applications is also of high interest to the semiconductor device community. This research vision is interlaced with the strong educational objective of mentoring new generations of graduate and undergraduate students in the field of electron devices, high frequency electronics, analog circuits, terahertz, and optics, stimulating their critical thinking and curiosity by providing them with hands-on experience in cutting-edge research. This is of significant importance given the future projected needs for highly trained engineers and scientists in the United States.This project aims at exploiting Super-Steep-Subthreshold-Slope Fin-based Field Effect Transistors as efficient terahertz detectors. The fundamental mechanism enabling a very sensitive terahertz response in these devices is their super-steep subthreshold slope (10mV/dec.), which is a result of a positive feedback induced by weak impact ionization and can lead to a very large responsivity. Preliminary data based on the measured direct current characteristics of fabricated devices predicts a much better performance in terms of both responsivity as well as noise equivalent power with respect to all the existing current room-temperature terahertz detector technologies, i.e., noise equivalent power ~ 0.01 pW/(Hz^0.5). Super-steep-slope Field Effect Transistors will be fabricated and configured as ultra-high-performance terahertz detectors. Thanks to its super-steep-slope response, this technology can promise more than two orders of magnitude larger responsivity than the thermally-limited 10 A/W responsivity of room-temperature FET and Schottky diode terahertz detectors, without increase in cost. This level of performance is not achievable with regular CMOS technologies. Moreover, when compared with other promising post-CMOS transistor technologies as terahertz detectors (such as tunnel FETs), these devices constitute a more robust platform since: (a) room-temperature demonstrations of super-steep-slope field effect transistors with direct current performance according to the requirements of terahertz detectors have been already demonstrated, (b) super-steep-slope field effect transistors are silicon based and 100% compatible with CMOS processes.
在过去的几十年里,太赫兹频段(0.1- 30thz)由于其在天文学、成像、光谱学、通信等各个领域的广泛应用而备受关注。尽管最近取得了重大进展,但仍然需要在这些频率下有效工作的半导体器件。该项目将在短时间内为太赫兹社区长期存在的问题提供答案:如何在室温下实现对铸工友好、可大规模制造的固态器件中非常敏感的太赫兹检测。为了实现这一目标,提出的工作旨在利用基于超陡亚阈值斜率鳍的场效应晶体管作为高效的太赫兹探测器。该项目将是第一个对这种新兴晶体管技术的太赫兹应用进行研究的项目,预计将在未来几年改变太赫兹技术的格局。事实上,期望在太赫兹检测中提供超过两个数量级的性能增益,这对太赫兹社区非常感兴趣。更一般地说,为可行的实际应用获取新兴晶体管技术的独特特性也是半导体器件社区的高度兴趣所在。这一研究愿景与指导电子器件、高频电子、模拟电路、太赫兹和光学领域的新一代研究生和本科生的强大教育目标交织在一起,通过为他们提供前沿研究的实践经验,激发他们的批判性思维和好奇心。考虑到美国未来对训练有素的工程师和科学家的预计需求,这一点非常重要。本项目旨在开发基于超陡亚阈值斜率鳍片的场效应晶体管作为高效的太赫兹探测器。在这些器件中实现非常敏感的太赫兹响应的基本机制是它们的超陡亚阈值斜率(10mV/ 12),这是由弱撞击电离引起的正反馈的结果,可以导致非常大的响应。基于测量的直流特性的初步数据预测,相对于所有现有的室温太赫兹探测器技术,在响应性和噪声等效功率方面都有更好的性能,即噪声等效功率~ 0.01 pW/(Hz^0.5)。超陡坡场效应晶体管将被制造并配置为超高性能的太赫兹探测器。由于其超陡斜率响应,该技术可以保证比室温场效应管和肖特基二极管太赫兹探测器的热限制10 A/W响应率大两个数量级以上,而不会增加成本。这种性能水平是常规CMOS技术无法实现的。此外,与其他有前途的后CMOS晶体管技术如太赫兹探测器(如隧道场效应管)相比,这些器件构成了一个更强大的平台,因为:(a)根据太赫兹探测器的要求,已经演示了具有直流性能的超陡斜率场效应晶体管的室温演示,(b)超陡斜率场效应晶体管是硅基的,与CMOS工艺100%兼容。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low-Temperature Wet Conformal Nickel Silicide Deposition for Transistor Technology through an Organometallic Approach
通过有机金属方法进行晶体管技术的低温湿法保形硅化镍沉积
- DOI:10.1021/acsami.6b13852
- 发表时间:2017
- 期刊:
- 影响因子:9.5
- 作者:Lin, Tsung-Han;Margossian, Tigran;De Marchi, Michele;Thammasack, Maxime;Zemlyanov, Dmitry;Kumar, Sudhir;Jagielski, Jakub;Zheng, Li-Qing;Shih, Chih-Jen;Zenobi, Renato
- 通讯作者:Zenobi, Renato
A Continuous Compact DC Model for Dual-Independent-Gate FinFETs
双独立栅极 FinFET 的连续紧凑 DC 模型
- DOI:10.1109/jeds.2016.2632709
- 发表时间:2017
- 期刊:
- 影响因子:2.3
- 作者:Hasan, Mehdi;Gaillardon, Pierre-Emmanuel;Sensale-Rodriguez, Berardi
- 通讯作者:Sensale-Rodriguez, Berardi
Towards high-performance polarity-controllable FETs with 2D materials
采用 2D 材料实现高性能极性可控 FET
- DOI:10.23919/date.2018.8342088
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Resta, Giovanni V.;Gonzalez, Jorge Romero;Balaji, Yashwanth;Agarwal, Tarun;Lin, Dennis;Catthor, Francky;Radu, Iuliana P.;De Micheli, Giovanni;Gaillardon, Pierre-Emmanuel
- 通讯作者:Gaillardon, Pierre-Emmanuel
Operation regimes and electrical transport of steep slope Schottky Si-FinFETS
陡坡肖特基 Si-FinFET 的工作状态和电传输
- DOI:10.1063/1.4975475
- 发表时间:2017
- 期刊:
- 影响因子:3.2
- 作者:D.-Y. Jeon;J. Zhang;J. Trommer;S.-J. Park;P.-E. Gaillardon;G. De Micheli;T. Mikolajick;W. M. Weber
- 通讯作者:W. M. Weber
Polarity-controllable 2-dimensional transistors: experimental demonstration and scaling opportunities
极性可控的二维晶体管:实验演示和扩展机会
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Resta, Giovanni V.;Balaji, Yashwanth;Agarwal, Tarun;Radu, Iuliana P.;Lin, Dennis;Catthoor, Francky;Gaillardon, Pierre-Emmanuel;De Micheli, Giovanni
- 通讯作者:De Micheli, Giovanni
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pierre-Emmanuel Gaillardon其他文献
Pierre-Emmanuel Gaillardon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pierre-Emmanuel Gaillardon', 18)}}的其他基金
FET: Medium: Collaborative Research: An Efficient Framework for the Stochastic Verification of Computation and Communication Systems Using Emerging Technologies
FET:媒介:协作研究:使用新兴技术对计算和通信系统进行随机验证的有效框架
- 批准号:
1856740 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
CAREER: Functionality-Enhanced Devices for Extending Moore's Law
职业:扩展摩尔定律的功能增强设备
- 批准号:
1751064 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
- 批准号:31471690
- 批准年份:2014
- 资助金额:90.0 万元
- 项目类别:面上项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
- 批准号:60976066
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
相似海外基金
Tandem mass spectrometer coupled to a ultra-high performance liquid chromatograph
串联质谱仪与超高性能液相色谱仪联用
- 批准号:
540736575 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Major Research Instrumentation
Ultra High-Performance Liquid Chromatography High-Resolution Mass Spectrometer (UHPLC-HRMS)
超高性能液相色谱高分辨率质谱仪 (UHPLC-HRMS)
- 批准号:
529714284 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Major Research Instrumentation
Creation of new LPSO phase with higher-entropy for the development of ultra-high-performance lightweight structural materials
创建具有更高熵的新LPSO相用于开发超高性能轻质结构材料
- 批准号:
23K17832 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Tandem mass spectrometer coupled to an ultra-high performance liquid chromatograph: UHPLC-HRMS/MS
串联质谱仪与超高性能液相色谱仪联用:UHPLC-HRMS/MS
- 批准号:
518143553 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Major Research Instrumentation
Achieving low-power and high-performance ultra-scalable processors with novel architecture
通过新颖的架构实现低功耗、高性能的超可扩展处理器
- 批准号:
23H03360 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of ultra-low radioactivity zeolites for implementation to the dark matter exploration experiments and demonstration of their performance.
开发超低放射性沸石,用于实施暗物质探索实验并展示其性能。
- 批准号:
23K03435 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ultra-performance liquid chromatography - triple quadrupole mass spectrometry system
超高效液相色谱-三重四极杆质谱系统
- 批准号:
10629514 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Ultra-High Performance Gradients for a 3T MRI Research Scanner
适用于 3T MRI 研究扫描仪的超高性能梯度
- 批准号:
10721677 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Fire Performance of Sustainable 3D-Printed Ultra-High-Performance Concrete with Recycled and Natural Materials
采用再生和天然材料的可持续 3D 打印超高性能混凝土的防火性能
- 批准号:
2882136 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Studentship
Ultra Performance Wing_ Project UP WING
超性能翼_Project UP WING
- 批准号:
10068384 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
EU-Funded