SBIR Phase I: Software for Developing Consumer-Driven Health Care Solutions
SBIR 第一阶段:用于开发消费者驱动的医疗保健解决方案的软件
基本信息
- 批准号:1647616
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-15 至 2018-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is the development of software that automatically identifies and labels problems that patients encounter when they receive care. This information tells health care providers exactly what they need to fix to improve patient care. Applications of the software include: a) the developing different software versions for different health care situations, the technology can be used to improve the patient experience in clinics, emergency departments, primary care settings, outpatient centers, etc.; b) Early interventions. Healthcare leaders are asking for an early warning system. By recording patient conversations with nurses and doctors while they are still in the hospital, this feedback can be used to identify and resolve problems before the patient is discharged; c) New health care delivery models. One hospital wants to reduce the length of stay for heart patients; doctors want to be sure that patients are ready to go home. The software is analyzing the stories of heart patients who did well versus patients who had problems when they left the hospital early. Their feedback will help keep patients out of the hospital and if they are admitted, improve their care before and after they leave; d) Following the doctor's orders. When chronic care patients don't follow through on the treatment plan recommended by their doctor, their health problems often get worse. This software can be used to collect feedback from chronically ill patients and identify patterns in why these patients are not following doctor's orders solutions that motivate and engage patients can be implemented; and e) Other industries. This software can be used to analyze patient feedback during clinical trials. The resulting information will make it easier to recruit and retain patients in clinical trials as well as improve clinical outcomes. Ultimately, results from these analyses could be used to inform FDA decision making within the pharmaceutical industry. The proposed project develops software that uses advanced Natural Language Processing (NLP) techniques to analyze patients? responses about their health care experiences in interviews and open response survey questions in order to provide hospitals with concrete, actionable information on how to improve care and patient outcomes. To date, hospitals have relied primarily on surveys to inform their attempts to improve patient experiences.This research will develop an NLP application for mining patient feedback across health care settings. Data where patients freely tell their "stories" provides a clearer and more precise view of the patient's experience than a standard survey with ratings on predefined questions. The challenge is that the variability of expression and experiences requires sophisticated techniques to be able to classify the information, determine the sentiment, and extract essential details that can provide actionable recommendations to hospitals. The team proposes a combination of data annotation, pattern matching, and machine learning techniques for classification and information extraction of core concepts like problem root causes from unstructured patient feedback. Since interviews comprise much of the most informative data, we will also evaluate which speech recognition technologies can best convert audio to text, for subsequent classification and information extraction.
该小企业创新研究 (SBIR) 第一阶段项目的更广泛影响/商业潜力是开发软件,该软件可以自动识别和标记患者在接受护理时遇到的问题。 这些信息准确地告诉医疗保健提供者他们需要解决哪些问题才能改善患者护理。 该软件的应用包括:a)针对不同的医疗保健情况开发不同的软件版本,该技术可用于改善诊所、急诊科、初级保健机构、门诊中心等的患者体验; b) 早期干预。 医疗保健领导者要求建立预警系统。 通过记录患者在医院期间与护士和医生的对话,该反馈可用于在患者出院前识别和解决问题; c) 新的医疗保健提供模式。 一家医院希望减少心脏病患者的住院时间;医生希望确保患者准备好回家。 该软件正在分析表现良好的心脏病患者与提早出院时出现问题的患者的故事。 他们的反馈将有助于让患者远离医院,如果患者入院,则可以改善他们出院前后的护理; d) 遵循医生的指示。 当慢性病患者不遵循医生建议的治疗计划时,他们的健康问题往往会变得更糟。 该软件可用于收集慢性病患者的反馈,并确定这些患者不遵守医嘱的模式,可以实施激励和吸引患者的解决方案; e) 其他行业。 该软件可用于分析临床试验期间患者的反馈。 由此产生的信息将使临床试验中招募和留住患者变得更容易,并改善临床结果。 最终,这些分析的结果可用于为 FDA 制药行业的决策提供信息。拟议的项目开发使用先进的自然语言处理(NLP)技术来分析患者的软件?在访谈和开放式调查问题中回答他们的医疗保健经历,以便为医院提供有关如何改善护理和患者治疗结果的具体、可操作的信息。迄今为止,医院主要依靠调查来告知他们改善患者体验的尝试。这项研究将开发一个 NLP 应用程序,用于在整个医疗保健环境中挖掘患者反馈。与对预定义问题进行评分的标准调查相比,患者自由讲述“故事”的数据可以更清晰、更准确地了解患者的经历。挑战在于,表达和体验的可变性需要复杂的技术来对信息进行分类、确定情绪并提取可为医院提供可行建议的基本细节。该团队提出了数据注释、模式匹配和机器学习技术的组合,用于对核心概念(例如来自非结构化患者反馈的问题根本原因)进行分类和信息提取。由于访谈包含大部分信息量最大的数据,因此我们还将评估哪些语音识别技术最能将音频转换为文本,以便进行后续分类和信息提取。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mary Kay O'Connor其他文献
Mary Kay O'Connor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mary Kay O'Connor', 18)}}的其他基金
SBIR Phase II: Software for Developing Consumer-Driven Health Care Solutions
SBIR 第二阶段:用于开发消费者驱动的医疗保健解决方案的软件
- 批准号:
1831160 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Software for Developing Consumer-Driven Healthcare Solutions
SBIR 第一阶段:用于开发消费者驱动的医疗保健解决方案的软件
- 批准号:
1448198 - 财政年份:2015
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: Novel Camera-Projector Device Leveraging Markerless Skin Registration and Projected Augmented Reality Software to Enable Navigation for Minimally Invasive Procedures
SBIR 第一阶段:新型相机投影仪设备利用无标记皮肤配准和投影增强现实软件实现微创手术导航
- 批准号:
2321906 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase II: A software-based tool for beyond visual line of sight (BVLOS) drone's connection reliability enhancement
SBIR 第二阶段:基于软件的工具,用于增强超视距 (BVLOS) 无人机的连接可靠性
- 批准号:
2304143 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Scientific Discovery Translation of Snow-Covered Road Perception Software to a Lane Detection in Snow (LDIS) Product
SBIR 第一阶段:将雪地道路感知软件科学发现转化为雪地车道检测 (LDIS) 产品
- 批准号:
2304352 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase II: A Software Platform for Assessment of Untrusted Electronics
SBIR 第二阶段:用于评估不可信电子产品的软件平台
- 批准号:
2304533 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase II: An innovative calibration software to suppress torque ripple and improve performance of electric motors.
SBIR Phase II:一款创新的校准软件,可抑制扭矩脉动并提高电动机的性能。
- 批准号:
2233023 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase I: A Technology-Enhanced Statistics Learning Software App
SBIR 第一阶段:技术增强的统计学习软件应用程序
- 批准号:
2324068 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Software-Defined Sub-Terahertz Imaging Radar for Algorithmic Agility and All-Weather Transportation Safety
SBIR 第一阶段:软件定义的亚太赫兹成像雷达,实现算法敏捷性和全天候运输安全
- 批准号:
2230398 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase II: Artificial Intelligence Powered Software Testing
SBIR 第二阶段:人工智能驱动的软件测试
- 批准号:
2223011 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Value-Driven Design Debt Management for Contemporary Software Systems
SBIR 第一阶段:当代软件系统的价值驱动设计债务管理
- 批准号:
2236824 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase II: Development of AI Software to Capture and Identify Circulating Rare Cells in Lung Patients
SBIR 第二阶段:开发人工智能软件来捕获和识别肺部患者的循环稀有细胞
- 批准号:
2230782 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement