INSPIRE: Excitonic Quantum Coherence - A Viable Path to Quantum Computing

INSPIRE:激子量子相干——量子计算的可行途径

基本信息

  • 批准号:
    1648655
  • 负责人:
  • 金额:
    $ 74.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-15 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL DESCRIPTION: This is an INSPIRE grant. Universal quantum computers with the ability to solve problems beyond the capability of present supercomputers have yet to be realized. This interdisciplinary project focuses on whether the assembly of organic dye molecules into complex excitonic networks using DNA self-assembly provides a viable path for the construction of such computers. An exciton is the packet of energy that resides in an organic dye molecule when it is in its excited state. This packet of energy is a quantum mechanical object that exhibits both wave-like and particle-like behavior just as light does. A manifestation of the wave-like behavior of the exciton is its ability to spread out over a dye molecule network so that it resides on multiple chromophores simultaneously. This process is referred to as excitonic quantum coherent energy transfer. A manifestation of the particle-like behavior is that two excitons can collide and scatter off of each other as they spread over a dye molecule network. By exploiting these two behaviors, in principle, dye molecules can be arranged into networks that function as quantum gates and quantum computers. In order for quantum coherent energy transfer to occur, dye molecules must be brought within a few nanometers of each other and, in order to build a quantum gate, dye molecules must be found for which quantum coherence can be maintained over a large dye network. The fundamental issue this research is seeking to address is whether dye molecules of sufficient quality can be found and whether these can be arranged into the complex networks with the close spacing required in order to make a functioning quantum gate and thereby provide a path to scalable universal quantum computation. This research program provides Boise State University students specific educating, training and mentoring in nanophotonics and computational materials science. This experience equips these students to meet the ever evolving and advancing technological needs of both local and national high tech industries and educational and scientific institutions. Combining education, training, and research with outreach, this research will advance the discovery, innovation, and overall knowledge-based prosperity of science and engineering.Technical Description:The goal of this research is to develop a new materials system for the assembly of quantum computers in which quantum computation is carried out by a many-exciton quantum walk over a network of dye molecules. The two primary tasks of this research are (1) to identify suitable dye molecules and (2) to determine the means by which these dye molecules, when covalently attached to DNA, can be arranged into the requisite configurations to function as quantum gates. In the first task, dye molecules are identified that, when paired using DNA assembly, exhibit large Davydov splitting and strong exciton-exciton interactions as determined by absorption spectroscopy and differential absorption spectroscopy, respectively. In the second task, how best to covalently attach dye molecules to DNA substrates to form quantum coherently interacting dye networks is established. A fundamental issue addressed by this research is how to effectively perform computation with excitons. The work impacts existing quantum computation research by providing new gate architectures that are robust against dispersion and decoherence and that have faster switching times than existing quantum gates.The grant is co-funded by the following programs, OIA; EPSCoR; CISE; ENG; and MPS.
非技术描述:这是一项 INSPIRE 资助。能够解决现有超级计算机无法解决的问题的通用量子计算机尚未实现。这个跨学科项目的重点是使用 DNA 自组装将有机染料分子组装成复杂的激子网络是否为构建此类计算机提供了可行的途径。激子是有机染料分子处于激发态时驻留在其中的能量包。这种能量包是一种量子力学物体,它像光一样表现出波状和粒子状的行为。激子波状行为的一个表现是它能够在染料分子网络上扩散,从而同时驻留在多个发色团上。这个过程被称为激子量子相干能量转移。类粒子行为的一个表现是,两个激子在染料分子网络上传播时可以相互碰撞和散射。原则上,通过利用这两种行为,染料分子可以排列成充当量子门和量子计算机的网络。为了发生量子相干能量转移,染料分子必须彼此保持在几纳米以内,并且为了构建量子门,必须找到可以在大型染料网络上保持量子相干性的染料分子。这项研究寻求解决的基本问题是是否能够找到足够质量的染料分子,以及是否可以将这些分子排列成具有所需紧密间距的复杂网络,以制造功能性量子门,从而为可扩展的通用量子计算提供一条路径。该研究项目为博伊西州立大学的学生提供纳米光子学和计算材料科学方面的具体教育、培训和指导。这种经验使这些学生能够满足当地和国家高科技行业以及教育和科研机构不断发展和进步的技术需求。这项研究将教育、培训、研究与推广相结合,将促进科学和工程的发现、创新和基于知识的整体繁荣。技术描述:这项研究的目标是开发一种用于组装量子计算机的新材料系统,其中量子计算是通过染料分子网络上的多激子量子行走来进行的。这项研究的两个主要任务是 (1) 识别合适的染料分子,以及 (2) 确定这些染料分子在共价连接到 DNA 时可以排列成所需配置以充当量子门的方法。在第一项任务中,分别通过吸收光谱和微分吸收光谱确定,染料分子在使用 DNA 组装配对时表现出大的达维多夫分裂和强的激子-激子相互作用。在第二项任务中,建立了如何最好地将染料分子共价连接到 DNA 底物上以形成量子相干相互作用的染料网络。这项研究解决的一个基本问题是如何有效地利用激子进行计算。这项工作通过提供新的门架构来影响现有的量子计算研究,这些架构能够抵抗色散和退相干,并且比现有的量子门具有更快的切换时间。该资助由以下项目共同资助:OIA; EPSCoR; CISE;英语;和MPS。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Large Davydov Splitting and Strong Fluorescence Suppression: An Investigation of Exciton Delocalization in DNA-Templated Holliday Junction Dye Aggregates.
  • DOI:
    10.1021/acs.jpca.7b12668
  • 发表时间:
    2018-03-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cannon BL;Patten LK;Kellis DL;Davis PH;Lee J;Graugnard E;Yurke B;Knowlton WB
  • 通讯作者:
    Knowlton WB
Coherent Exciton Delocalization in a Two-State DNA-Templated Dye Aggregate System.
  • DOI:
    10.1021/acs.jpca.7b04344
  • 发表时间:
    2017-09-21
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cannon BL;Kellis DL;Patten LK;Davis PH;Lee J;Graugnard E;Yurke B;Knowlton WB
  • 通讯作者:
    Knowlton WB
DNA-Templated Aggregates of Strongly Coupled Cyanine Dyes: Nonradiative Decay Governs Exciton Lifetimes
  • DOI:
    10.1021/acs.jpclett.9b00404
  • 发表时间:
    2019-05-16
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Huff, Jonathan S.;Davis, Paul H.;Pensack, Ryan D.
  • 通讯作者:
    Pensack, Ryan D.
Delocalized Two-Exciton States in DNA Scaffolded Cyanine Dimers
  • DOI:
    10.1021/acs.jpcb.0c06732
  • 发表时间:
    2020-09-17
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Cunningham, Paul D.;Diaz, Sebastian A.;Melinger, Joseph S.
  • 通讯作者:
    Melinger, Joseph S.
Excitonically coupled cyanine dye dimers as energy transfer relays on DNA templates
激子耦合花青染料二聚体作为 DNA 模板上的能量传递中继
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sebastián Díaz, Young Kim
  • 通讯作者:
    Sebastián Díaz, Young Kim
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Knowlton其他文献

William Knowlton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Knowlton', 18)}}的其他基金

Collaborative Research: RUI: A Study of the Solution-Based Synthesis of N-Doped ZnO, Mn- and Co-Doped ZnO, and (N,Mn)- and (N,Co)-Codoped ZnO
合作研究:RUI:基于溶液的 N 掺杂 ZnO、Mn 和 Co 掺杂 ZnO 以及 (N,Mn) 和 (N,Co) 共掺杂 ZnO 的合成研究
  • 批准号:
    0840227
  • 财政年份:
    2008
  • 资助金额:
    $ 74.97万
  • 项目类别:
    Standard Grant

相似海外基金

Quantum Monte Carlo methods beyond the fixed-node approximation: excitonic effects and hydrogen compounds
超越固定节点近似的量子蒙特卡罗方法:激子效应和氢化合物
  • 批准号:
    2316007
  • 财政年份:
    2023
  • 资助金额:
    $ 74.97万
  • 项目类别:
    Standard Grant
Developing Quantum-Optical Measurements of Excitonic Coherence for Quantum Entanglement in Single Organic Molecules
开发单个有机分子中量子纠缠的激子相干性的量子光学测量
  • 批准号:
    EP/V048805/1
  • 财政年份:
    2021
  • 资助金额:
    $ 74.97万
  • 项目类别:
    Research Grant
Strong correlation and strong coupling effects in the excitonic phase and its vicinity region based on the first-principles calculations and the quantum many-body calculations
基于第一性原理计算和量子多体计算的激子相及其邻近区域的强关联和强耦合效应
  • 批准号:
    21K03399
  • 财政年份:
    2021
  • 资助金额:
    $ 74.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RAISE-TAQS: Room-Temperature Quantum Sensing and Computation using DNA-based Excitonic Circuits
RAISE-TAQS:使用基于 DNA 的激子电路进行室温量子传感和计算
  • 批准号:
    1839155
  • 财政年份:
    2018
  • 资助金额:
    $ 74.97万
  • 项目类别:
    Standard Grant
Theoretical perspectives on novel quantum phases generated by excitonic condensation
激子凝聚产生的新型量子相的理论视角
  • 批准号:
    17K05530
  • 财政年份:
    2017
  • 资助金额:
    $ 74.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Excitonic recombination processes in III-nitride quantum wells
III 族氮化物量子阱中的激子复合过程
  • 批准号:
    392680433
  • 财政年份:
    2017
  • 资助金额:
    $ 74.97万
  • 项目类别:
    Research Grants
Dynamics of excitonic properties in water-soluble CIS semiconductor quantum dots
水溶性CIS半导体量子点的激子特性动态
  • 批准号:
    16K04938
  • 财政年份:
    2016
  • 资助金额:
    $ 74.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Precision measurement of quantum degenerate bulk excitons by excitonic Lyman spectroscopy
利用激子莱曼光谱精确测量量子简并体激子
  • 批准号:
    25707024
  • 财政年份:
    2013
  • 资助金额:
    $ 74.97万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Quantum State Resolved Spectroscopy of Excitonic and Multi-Excitonic Dynamics in Quantum Confined Nanostructures and Heterojunctions
量子约束纳米结构和异质结中激子和多激子动力学的量子态分辨光谱
  • 批准号:
    1206451
  • 财政年份:
    2012
  • 资助金额:
    $ 74.97万
  • 项目类别:
    Continuing Grant
Dynamics, quantum coherence and entanglement of strongly correlated excitonic systems (B05)
强相关激子系统的动力学、量子相干性和纠缠(B05)
  • 批准号:
    5454481
  • 财政年份:
    2005
  • 资助金额:
    $ 74.97万
  • 项目类别:
    Collaborative Research Centres
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了