CAREER: Band Engineering in Amorphous Semiconductors

职业:非晶半导体能带工程

基本信息

项目摘要

Non-Technical Description: At the core of today?s electronics are semiconductor materials. The optical energy at which a semiconductor strongly absorbs light is known as its bandgap. By mixing two different materials to form a semiconductor alloy, its bandgap can be tuned. The first goal of this project is to study the fundamental materials properties and bandgap tuning in alloys made of amorphous, or disordered, oxide semiconductors. These wide bandgap materials are less explored but very promising for applications of strong societal importance such as devices for renewable energy and health care. The second goal of this project is to bring together research and education by engaging the entire research team in outreach activities with the public, including school-age learners. In addition, the principal investigator provides mentoring to graduate and undergraduate students through research activities and ?Career Connections? events featuring discussions with practicing scientists and engineers.Technical Description: This project explores band engineering of amorphous oxide semiconductor thin films via quaternary and quinary alloying. These materials have a wide bandgap, similar to that of gallium nitride. Multi-component phase diagrams are used to relate oxide alloy composition to thermodynamic stability and materials properties. The specific objectives of this project are: (i) to investigate the alloy composition ranges and thermodynamic pathways available for meta-stable band-engineered amorphous alloy films; (ii) to characterize charge transport and sub-bandgap density of states as a function of alloy composition, using electrical and opto-electronic techniques; (iii) to develop models and experimentally validate hetero-structure interface formation in amorphous oxide alloys. Through these studies, this project significantly expands the present scientific understanding and application scope of disordered semiconductors. Heterostructures made using these band-engineered amorphous oxide alloys can be used in future high-power electronics or deep ultraviolet optoelectronics devices.
非技术描述:在今天的核心?电子材料是半导体材料。半导体强烈吸收光的光能称为其带隙。通过混合两种不同的材料形成半导体合金,可以调整其带隙。本计画的第一个目标是研究非晶或无序氧化物半导体合金的基本材料性质与能带调整。这些宽带隙材料较少探索,但对于具有强烈社会重要性的应用,如可再生能源和医疗保健设备,非常有前途。该项目的第二个目标是通过让整个研究团队参与与公众,包括学龄学生的外联活动,将研究和教育结合起来。此外,主要研究者提供指导,研究生和本科生通过研究活动和?职业联系?技术描述:本项目通过四元和五元合金化探索非晶氧化物半导体薄膜的能带工程。这些材料具有宽的带隙,类似于氮化镓。多组分相图用于将氧化物合金成分与热力学稳定性和材料性质联系起来。该项目的具体目标是:(i)研究亚稳态能带工程非晶合金薄膜的合金成分范围和热力学途径;(ii)使用电学和光电技术表征作为合金成分函数的电荷传输和亚带隙态密度;(iii)开发模型并通过实验验证非晶氧化物合金中异质结构界面的形成。通过这些研究,该项目大大扩展了目前对无序半导体的科学认识和应用范围。使用这些能带工程非晶氧化物合金制成的异质结构可用于未来的高功率电子器件或深紫外光电子器件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rebecca Peterson其他文献

Antibiotic-Associated Eosinophilic and Occlusive Arteritis in Calves Complicating Preclinical Studies of Left Ventricular Assist Devices
小牛抗生素相关性嗜酸粒细胞性和闭塞性动脉炎使左心室辅助装置的临床前研究复杂化
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Cooper;J. Griffith;J. Reibson;Rebecca Peterson;Evan P. Roush;Qing Zhong;W. Weiss;G. Rosenberg
  • 通讯作者:
    G. Rosenberg
A cross-sectional and longitudinal examination of the development of innovation capability in undergraduate engineering students
工科本科生创新能力发展的横断面和纵向考察
  • DOI:
    10.1115/detc2015-47650
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Trina C. Kershaw;Rebecca Peterson;Molly McCarthy;Paul T. Williams;Adam Young;Katja Hölttä;C. Seepersad;S. Bhowmick
  • 通讯作者:
    S. Bhowmick
A Quest for Relevance: Becoming a Community Place
寻求相关性:成为一个社区场所
  • DOI:
    10.1080/10598650.2020.1749801
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Elgin Grey;Katie Kapczynski;Carlos Llanos;Diana Peña;Rebecca Peterson;L. Solomon;Wendy Wolf
  • 通讯作者:
    Wendy Wolf

Rebecca Peterson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rebecca Peterson', 18)}}的其他基金

REU Site: Semiconductor Hands-On Research Experience (SHORE)
REU 网站:半导体实践研究体验 (SHORE)
  • 批准号:
    2244040
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
2020 Device Research Conference (DRC), To Be Held Virtually June 21-24, 2020.
2020 年器件研究会议 (DRC) 将于 2020 年 6 月 21 日至 24 日以虚拟方式举行。
  • 批准号:
    2035523
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
BRIGE: High-Performance Printable Oxides for Flexible Electronics (HiPPO)
BRIGE:用于柔性电子产品的高性能可印刷氧化物(HiPPO)
  • 批准号:
    1032538
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

人参结合Band-3蛋白胞质结构域调控蛋白复合物装配调节红细胞形态和功能的分子机制研究
  • 批准号:
    82004074
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
CD47和Band3介导的衰老红细胞吞噬机制的单分子定位成像研究
  • 批准号:
    81501432
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
Band3蛋白关联的一种新活性蛋白酶的纯化、基因克隆及其特性研究
  • 批准号:
    39970291
  • 批准年份:
    1999
  • 资助金额:
    11.0 万元
  • 项目类别:
    面上项目

相似海外基金

Band Structure Engineering for Self-Powered Visible Light Driven Photocatalyst
自供电可见光驱动光催化剂的能带结构工程
  • 批准号:
    23KJ1404
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Microbubble resonator dispersion engineering for blue-band soliton comb generation
用于蓝带孤子梳生成的微泡谐振器色散工程
  • 批准号:
    22K14621
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Realization of a mechanical structure enabling power generation and vibration reduction via band engineering
通过带工程实现可发电和减振的机械结构
  • 批准号:
    21KK0252
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Band Engineering of Dirac Materials for Device Applications
用于设备应用的狄拉克材料能带工程
  • 批准号:
    RGPIN-2016-04793
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Band Structure Engineering of Triazine Covalent Frameworks toward Water Splitting Electrocatalyst
三嗪共价框架的能带结构工程用于水分解电催化剂
  • 批准号:
    21K14734
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Theoretical design of magnetic topological material by high-throughput magnetism/band engineering
高通量磁/能带工程磁性拓扑材料的理论设计
  • 批准号:
    21H01789
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Interface charge engineering for manipulation of band alignment at dielectric interfaces and demonstration of its impact on device characteristics
用于操纵介电界面能带排列的界面电荷工程及其对器件特性的影响的演示
  • 批准号:
    21H04550
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
'Investigating the impact of Bismuth on the band gap engineering and morphological properties of III/V semiconductor materials grown using MBE'.
“研究铋对使用 MBE 生长的 III/V 半导体材料的带隙工程和形态特性的影响”。
  • 批准号:
    2602258
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Studentship
Band-edge engineering and property control in wide band-gap sulfide semiconductors
宽带隙硫化物半导体的带边工程和性能控制
  • 批准号:
    21K04906
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On-wafer band engineering for Ge epitaxial layers selectively grown on Si
在 Si 上选择性生长 Ge 外延层的晶圆上能带工程
  • 批准号:
    21H01367
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了