CAREER: Integrated Approaches for Fast and Accurate Large-Scale Inversion

职业:快速准确的大规模反演的综合方法

基本信息

项目摘要

The ability to compute solutions to inverse problems is essential in various scientific applications (e.g., for cancer diagnosis or for crack detection in underground mines), but computing real-time solutions to large nonlinear problems that incorporate physics- or data-informed constraints is not feasible with current inversion algorithms. Moreover, as numerical solutions to inverse problems are increasingly being used for data analysis and to aid in decision-making, these computational limitations pose significant bottlenecks in algorithms for uncertainty quantification (e.g., for estimating solution variances). The overarching goal of this project is to significantly reduce the costs of numerical inversion and to enable statistical tools to aid scientists in making informed decisions. These developments will lead to scientific advancement in many important fields. For example, existing collaborations with biomedical and mining engineers will ensure that the proposed research can result in improved medical diagnosis via advanced point-of-care imaging technologies, fewer injuries due to improved ground control monitoring of underground mines, and advanced signal estimation for real-time analysis of physiological systems. Moreover, the PI will continue to actively engage in activities that encourage students from historically under-represented groups. The PI's focus on upper elementary to high school girls and on outreach that will feed back into the greater research and teaching communities (e.g., K-12 teachers) will contribute to the recruitment, training, and retention of a diverse next generation of computational scientists.This research will advance knowledge in the field of computational inverse problems by developing faster methodologies and more robust frameworks for the design, computation, and analysis of solutions to inverse problems. An integrated framework will be adopted, where the main research thrusts are (i) to develop novel regularization methods and implementations to handle application-specific constraints, while simultaneously incorporating robust parameter selection methods; (ii) to advance technologies for real-time computation of solutions to large, nonlinear inverse problems (e.g., by integrating stochastic methods and update approaches); and (iii) to enable critical, yet previously unobtainable, quantitative diagnostics for complex, nonlinear systems by developing efficient error estimation methods.
计算反问题的解的能力在各种科学应用中是必不可少的(例如,癌症诊断或地下矿山的裂缝检测),但是计算包含物理或数据信息约束的大型非线性问题的实时解在当前的反演算法中是不可行的。此外,随着反问题的数值解越来越多地用于数据分析和帮助决策,这些计算限制对不确定性量化算法(例如,估计解方差)构成了重大瓶颈。该项目的首要目标是显著降低数值反演的成本,并使统计工具能够帮助科学家做出明智的决策。这些发展将导致许多重要领域的科学进步。例如,与生物医学和采矿工程师的现有合作将确保拟议的研究能够通过先进的即时成像技术改善医疗诊断,通过改进地下矿山的地面控制监测减少伤害,以及用于生理系统实时分析的先进信号估计。此外,PI将继续积极参与鼓励来自历史上代表性不足的群体的学生的活动。PI的重点是小学高年级到高中女生,并将其推广到更大的研究和教学社区(例如,K-12教师),这将有助于招聘、培训和留住多样化的下一代计算科学家。这项研究将通过开发更快的方法和更强大的框架来设计、计算和分析反问题的解决方案,从而推进计算反问题领域的知识。将采用一个集成框架,其中主要研究重点是(i)开发新的正则化方法和实现来处理特定应用的约束,同时结合鲁棒参数选择方法;(ii)推进大型非线性逆问题解的实时计算技术(例如,通过整合随机方法和更新方法);(iii)通过开发有效的误差估计方法,对复杂的非线性系统进行关键但以前无法获得的定量诊断。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
slimTrain---A Stochastic Approximation Method for Training Separable Deep Neural Networks
slimTrain---一种训练可分离深度神经网络的随机逼近方法
  • DOI:
    10.1137/21m1452512
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Newman, Elizabeth;Chung, Julianne;Chung, Matthias;Ruthotto, Lars
  • 通讯作者:
    Ruthotto, Lars
Efficient generalized Golub–Kahan based methods for dynamic inverse problems
  • DOI:
    10.1088/1361-6420/aaa0e1
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Julianne Chung;A. Saibaba;Matthew Brown;E. Westman
  • 通讯作者:
    Julianne Chung;A. Saibaba;Matthew Brown;E. Westman
Iterative Sampled Methods for Massive and Separable Nonlinear Inverse Problems
大规模可分离非线性反问题的迭代采样方法
Hybrid Projection Methods with Recycling for Inverse Problems
  • DOI:
    10.1137/20m1349515
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Julianne Chung;E. D. Sturler;Jiahua Jiang
  • 通讯作者:
    Julianne Chung;E. D. Sturler;Jiahua Jiang
Research in Inverse Problems and Training in Computational Science: A Reflection on the Importance of Community
计算科学中的反问题研究和培训:对社区重要性的反思
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julianne Chung其他文献

High-Performance Three-Dimensional Image Reconstruction for Molecular Structure Determination
用于分子结构测定的高性能三维图像重建
Iterative Reconstruction Methods for Cosmological X-Ray Tomography
宇宙学 X 射线断层扫描的迭代重建方法
  • DOI:
    10.48550/arxiv.2405.02073
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Julianne Chung;Lucas Onisk;Yiran Wang
  • 通讯作者:
    Yiran Wang
Optimal Regularized Inverse Matrices for Inverse Problems
反问题的最优正则逆矩阵
Uncertainty quantification for goal-oriented inverse problems via variational encoder-decoder networks
通过变分编码器-解码器网络对面向目标的反问题进行不确定性量化
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    B. Afkham;Julianne Chung;Matthias Chung
  • 通讯作者:
    Matthias Chung
Randomized and inner-product free Krylov methods for large-scale inverse problems
  • DOI:
    10.1007/s11075-025-02167-w
  • 发表时间:
    2025-07-11
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Malena Sabaté Landman;Ariana N. Brown;Julianne Chung;James G. Nagy
  • 通讯作者:
    James G. Nagy

Julianne Chung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Julianne Chung', 18)}}的其他基金

CAREER: Integrated Approaches for Fast and Accurate Large-Scale Inversion
职业:快速准确的大规模反演的综合方法
  • 批准号:
    2245192
  • 财政年份:
    2022
  • 资助金额:
    $ 40.28万
  • 项目类别:
    Continuing Grant
ATD: Collaborative Research: Computationally Efficient Algorithms for Detecting Anomalous Atmospheric Emissions
ATD:协作研究:用于检测异常大气排放的计算高效算法
  • 批准号:
    2341843
  • 财政年份:
    2022
  • 资助金额:
    $ 40.28万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: Computationally Efficient Algorithms for Detecting Anomalous Atmospheric Emissions
ATD:协作研究:用于检测异常大气排放的计算高效算法
  • 批准号:
    2026841
  • 财政年份:
    2020
  • 资助金额:
    $ 40.28万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0902322
  • 财政年份:
    2009
  • 资助金额:
    $ 40.28万
  • 项目类别:
    Fellowship Award

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
焦虑症小鼠模型整合模式(Integrated) 行为和精细行为评价体系的构建
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

NEM-EMERGE: An integrated set of novel approaches to counter the emergence and proliferation of invasive and virulent soil-borne nematodes
NEM-EMERGE:一套综合的新方法来对抗入侵性和剧毒土传线虫的出现和扩散
  • 批准号:
    10080598
  • 财政年份:
    2024
  • 资助金额:
    $ 40.28万
  • 项目类别:
    EU-Funded
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
  • 批准号:
    10097944
  • 财政年份:
    2024
  • 资助金额:
    $ 40.28万
  • 项目类别:
    EU-Funded
SUNRISE: Safe and sUstainable by desigN: IntegRated approaches for Impact aSsessment of advanced matErials
SUNRISE:安全且可持续的设计:先进材料影响评估的综合方法
  • 批准号:
    10103630
  • 财政年份:
    2024
  • 资助金额:
    $ 40.28万
  • 项目类别:
    EU-Funded
Integrating universal and tailored approaches across the continuum of mental health and substance use supports: Supporting the implementation and coordination of the Icelandic Prevention Model and Integrated Youth Services
在心理健康和药物滥用支持的连续过程中整合通用和量身定制的方法:支持冰岛预防模式和综合青年服务的实施和协调
  • 批准号:
    477940
  • 财政年份:
    2024
  • 资助金额:
    $ 40.28万
  • 项目类别:
    Salary Programs
An integrated set of novel approaches to counter the emergence and proliferation of invasive and virulent soil-borne nematodes
一套综合的新方法来对抗入侵性和剧毒土传线虫的出现和扩散
  • 批准号:
    10093554
  • 财政年份:
    2024
  • 资助金额:
    $ 40.28万
  • 项目类别:
    EU-Funded
States of Clay: Integrated Scientific Approaches to Clay Bureaucratic Objects from Early Mesopotamia, 3700-2700 BCE
粘土状态:公元前 3700-2700 年早期美索不达米亚粘土官僚物品的综合科学方法
  • 批准号:
    AH/X001717/1
  • 财政年份:
    2023
  • 资助金额:
    $ 40.28万
  • 项目类别:
    Research Grant
Integrated Public Health and Academic Collaboration for Infectious Diseases Control (iPHAC-IDC): Implementation of One Health approaches to pandemic preparedness and adolescent HIV prevention
传染病控制综合公共卫生和学术合作 (iPHAC-IDC):实施“同一个健康”方法来预防大流行病和青少年艾滋病毒预防
  • 批准号:
    10807957
  • 财政年份:
    2023
  • 资助金额:
    $ 40.28万
  • 项目类别:
RE-thinking of approaches and toolkits for transdisciplinary INTEGRATEd assessment of climate compatible energy strategies from the African Union through to the European Union (Re-Integrate)
重新思考从非洲联盟到欧盟对气候兼容能源战略进行跨学科综合评估的方法和工具包(重新整合)
  • 批准号:
    10083920
  • 财政年份:
    2023
  • 资助金额:
    $ 40.28万
  • 项目类别:
    EU-Funded
Novel Plastizymes: discovery and improvement of plastic-degrading enzymes by integrated cycles of computational and experimental approaches
新型塑料酶:通过计算和实验方法的综合循环发现和改进塑料降解酶
  • 批准号:
    BB/X00306X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 40.28万
  • 项目类别:
    Research Grant
Maternal OutcoMes (MOMs) Program: Testing Integrated Maternal Care Model Approaches to Reduce Disparities in Severe Maternal Morbidity
孕产妇结局 (MOM) 计划:测试综合孕产妇护理模式方法,以减少严重孕产妇发病率的差异
  • 批准号:
    10835372
  • 财政年份:
    2023
  • 资助金额:
    $ 40.28万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了