Discovering Hierarchical Representations for Action Understanding
发现动作理解的层次表示
基本信息
- 批准号:1655300
- 负责人:
- 金额:$ 55.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A major issue in the psychological sciences is understanding how people can infer the intentions of others. Humans are remarkably adept at predicting the actions of other people and making inferences about their intention and goals. The present investigation examines how humans make such inferences from the physical movements of others. The work is guided by a computational theory of biological motion understanding that quantifies what aspects of actions allow observers to make inferences about the meaning of actions and what might come next. The larger goal is to explain how perception and reasoning operate synergistically to infer hidden goals and intentions. These findings will guide development of the next generation of intelligent machine-vision systems, useful in forensic sciences as well as many other real-world applications. Such systems will need to perform challenging tasks that currently are difficult and time-consuming for humans (for example, automated interpretation of human actions recorded in low-resolution surveillance video). The project will also help to identify individual differences in action understanding, potentially revealing the nature of the impairments in action understanding observed in people with autism disorder. In addition, the project will provide a unique training opportunity for students who are interested in interdisciplinary research at the interface between cognitive science and artificial intelligence and will provide an in-depth international research experience for a graduate student and postdoctoral fellow.The research will integrate advanced psychophysical methods with sophisticated computational approaches. A key aim is to develop a unified theory based on a hierarchical non-parametric Bayesian framework, specifying the fundamental computational mechanisms involved in perception of human actions and reasoning about them. More generally, the project will use human body movements as an underutilized approach to understanding general problems in learning: how to construct, use and transform hierarchical representations to support human perception and cognition. Three aims are particularly noteworthy. First, the project will integrate computational modeling approaches with behavioral experiments to investigate the critical connection between perceptual and cognitive systems. Second, the project uses action stimuli derived from motion capture data in the real world as the visual input (CCTV images collected in the UK and secured at the University of Glasgow). By avoiding the limitations of studies that use restricted examples and constrained environments, the investigators maximize the likelihood that the findings will generalize to real-world situations. Third, the project will develop significant extensions of Bayesian approaches in order to study complex visual processes by combining generative models with probabilistic constraints. This award is co-funded by the Perception, Action, and Cognition Program and the Office of International Science and Engineering.
心理科学的一个主要问题是理解人们如何推断他人的意图。人类非常擅长预测他人的行为,并推断他们的意图和目标。目前的调查研究了人类如何从他人的身体动作中做出这样的推断。这项工作以生物运动理解的计算理论为指导,该理论量化了行动的哪些方面可以让观察者对行动的意义和下一步可能发生的事情做出推断。更大的目标是解释感知和推理如何协同运作来推断隐藏的目标和意图。这些发现将指导下一代智能机器视觉系统的发展,在法医科学以及许多其他现实世界的应用中都很有用。此类系统将需要执行目前对人类来说困难且耗时的挑战性任务(例如,自动解释低分辨率监控视频中记录的人类行为)。该项目还将有助于确定行动理解的个体差异,潜在地揭示在自闭症患者中观察到的行动理解障碍的本质。此外,该项目将为对认知科学与人工智能交叉领域研究感兴趣的学生提供独特的培训机会,并将为研究生和博士后提供深入的国际研究经验。这项研究将结合先进的心理物理方法和复杂的计算方法。一个关键目标是建立一个基于分层非参数贝叶斯框架的统一理论,指定涉及人类行为感知和推理的基本计算机制。更一般地说,该项目将使用人体运动作为一种未被充分利用的方法来理解学习中的一般问题:如何构建、使用和转换分层表示来支持人类感知和认知。有三个目标特别值得注意。首先,该项目将结合计算建模方法和行为实验来研究感知和认知系统之间的关键联系。其次,该项目使用来自现实世界中动作捕捉数据的动作刺激作为视觉输入(CCTV图像收集于英国,并在格拉斯哥大学获得)。通过避免使用受限示例和受限环境的研究的局限性,研究人员最大限度地提高了研究结果推广到现实世界的可能性。第三,该项目将开发贝叶斯方法的重要扩展,以便通过将生成模型与概率约束相结合来研究复杂的视觉过程。该奖项由感知、行动和认知项目和国际科学与工程办公室共同资助。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Partitioning the perception of physical and social events with a unified psychological space
用统一的心理空间划分对身体和社会事件的感知
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Shu, T.
- 通讯作者:Shu, T.
Perception of Continuous Movements from Causal Actions
从因果行为中感知连续运动
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Peng, Yujia;Ichien, Nicholas;Lu, Hongjing
- 通讯作者:Lu, Hongjing
Parts beget parts: Bootstrapping hierarchical object representations through visual statistical learning
零件产生零件:通过视觉统计学习引导分层对象表示
- DOI:10.1016/j.cognition.2020.104515
- 发表时间:2021
- 期刊:
- 影响因子:3.4
- 作者:Lee, Alan L.F.;Liu, Zili;Lu, Hongjing
- 通讯作者:Lu, Hongjing
Aesthetic experience is influenced by causality in biological movements
审美体验受到生物运动因果关系的影响
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Chen, Y;Pollick, F;Lu, H.
- 通讯作者:Lu, H.
A tale of two explanations: Enhancing human trust by explaining robot behavior
- DOI:10.1126/scirobotics.aay4663
- 发表时间:2019-12-18
- 期刊:
- 影响因子:25
- 作者:Edmonds, Mark;Gao, Feng;Zhu, Song-Chun
- 通讯作者:Zhu, Song-Chun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongjing Lu其他文献
Title Model Selection and Velocity Estimation Using Novel Priors for Motion Patterns Permalink
标题 使用新颖先验进行运动模式的模型选择和速度估计 永久链接
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Shuang Wu;Hongjing Lu;A. Yuille - 通讯作者:
A. Yuille
Evidence from counterfactual tasks supports emergent analogical reasoning in large language models
来自反事实任务的证据支持大型语言模型中的紧急类比推理
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Taylor Webb;K. Holyoak;Hongjing Lu - 通讯作者:
Hongjing Lu
Joints and their relations as critical features in action discrimination: evidence from a classification image method.
关节及其关系作为动作辨别的关键特征:来自分类图像方法的证据。
- DOI:
10.1167/15.1.20 - 发表时间:
2015 - 期刊:
- 影响因子:1.8
- 作者:
Jeroen J. A. van Boxtel;Hongjing Lu - 通讯作者:
Hongjing Lu
Bayesian integration of position and orientation cues in perception of biological and non-biological forms
生物和非生物形式感知中位置和方向线索的贝叶斯整合
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:2.9
- 作者:
Steven M. Thurman;Hongjing Lu - 通讯作者:
Hongjing Lu
Revisiting the importance of common body motion in human action perception
重新审视常见身体运动在人类动作感知中的重要性
- DOI:
10.3758/s13414-015-1031-1 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Steven M. Thurman;Hongjing Lu - 通讯作者:
Hongjing Lu
Hongjing Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongjing Lu', 18)}}的其他基金
A unified theory for perception of physical and social dynamics
物理和社会动态感知的统一理论
- 批准号:
2142269 - 财政年份:2022
- 资助金额:
$ 55.58万 - 项目类别:
Standard Grant
CAREER: A Computational Investigation into Biological Motion Perception
职业:生物运动感知的计算研究
- 批准号:
0843880 - 财政年份:2009
- 资助金额:
$ 55.58万 - 项目类别:
Standard Grant
相似国自然基金
丙烷脱氢Pt@hierarchical zeolite催化剂的设计制备与反应调控
- 批准号:22178062
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
Hierarchical Deep Representations of Anatomy (HiDRA)
解剖学的层次深度表示 (HiDRA)
- 批准号:
EP/W011794/1 - 财政年份:2022
- 资助金额:
$ 55.58万 - 项目类别:
Research Grant
Spatiotemporal neuronal system dynamics underlying hierarchical visual representations of objects and faces for primate perception and discrimination
时空神经元系统动力学是灵长类动物感知和辨别的物体和面部分层视觉表征的基础
- 批准号:
BB/T00598X/1 - 财政年份:2020
- 资助金额:
$ 55.58万 - 项目类别:
Research Grant
Learning Universal Patient Representations with Hierarchical Transformers
使用分层转换器学习通用患者表示
- 批准号:
10587270 - 财政年份:2019
- 资助金额:
$ 55.58万 - 项目类别:
Computational modelling visual perception in a biologically realistic neural network: Developing rich, hierarchical representations of visual scenes
生物现实神经网络中视觉感知的计算建模:开发视觉场景的丰富、分层表示
- 批准号:
2108388 - 财政年份:2018
- 资助金额:
$ 55.58万 - 项目类别:
Studentship
Hierarchical control of sequential skills: Using EEG to decode the underlying representations
顺序技能的分层控制:使用脑电图解码底层表征
- 批准号:
1734264 - 财政年份:2017
- 资助金额:
$ 55.58万 - 项目类别:
Standard Grant
Predictive Representations for Task-Independent Hierarchical Reinforcement Learning
任务无关的分层强化学习的预测表示
- 批准号:
2295750 - 财政年份:2017
- 资助金额:
$ 55.58万 - 项目类别:
Studentship
Semi-supervised learning of deep hierarchical hidden representations
深层层次隐藏表示的半监督学习
- 批准号:
1793885 - 财政年份:2016
- 资助金额:
$ 55.58万 - 项目类别:
Studentship
Near-Field and Far-Field Imaging by Hierarchical Wave Field Representations in k-Space
k 空间中分层波场表示的近场和远场成像
- 批准号:
239929539 - 财政年份:2013
- 资助金额:
$ 55.58万 - 项目类别:
Research Grants
CIF: Small: Fast Stagewise Learning of Sparse Hierarchical Data Representations
CIF:小型:稀疏分层数据表示的快速分阶段学习
- 批准号:
1116208 - 财政年份:2011
- 资助金额:
$ 55.58万 - 项目类别:
Standard Grant
Unsupervised Learning of Hierarchical Representations for Natural Images
自然图像分层表示的无监督学习
- 批准号:
200403176 - 财政年份:2011
- 资助金额:
$ 55.58万 - 项目类别:
Priority Programmes