Learning Optimal Control Using Forward Backward Stochastic Differential Equations

使用前向后向随机微分方程学习最优控制

基本信息

  • 批准号:
    1662523
  • 负责人:
  • 金额:
    $ 34.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Stochastic systems are those whose behavior is random and cannot be predicted accurately but can be analyzed statistically. Stochastic optimal control has a wide range of applications in robotics, space exploration, autonomous systems, finance, computational neuroscience and computational biology. Despite the long history of stochastic optimal control theory, existing methodologies suffer from limitations related to assumptions on the structure of the dynamics, the form of cost functions, and connections between control strategies and random disturbances. These assumptions have restricted the applicability of this control method to special classes of problems that typically have simpler descriptions. This project will expand the applicability of stochastic optimal control to a broader class of stochastic optimization problems. The educational benefits of this project involve development of a new course and instructional materials for advanced undergraduate and graduate students. In particular, this research aims to develop novel and scalable stochastic control algorithms using the theory of forward-backward stochastic differential equation and their connections to probabilistic representations of solutions of backward nonlinear partial differential equations. To aid future research and adoption of this work into these domains, the code, data, and results developed during the course of this project will be distributed freely to the scientific community. The PIs plan is to integrate powerful methods on adaptive importance sampling and forward-backward stochastic differential equations to develop scalable iterative stochastic control algorithms. In addition, this research project plans to make generalizations and extensions of the theory of forward-backward stochastic differential equations to problems such as stochastic differential games, control-constrained and bang-bang stochastic control and stochastic control under non- smooth cost functions. The work on these generalizations involves the development of algorithms which, will further expand the applicability of stochastic optimal control into new domains and new tasks. The educational plan of this research project has several goals designed to engage undergraduate and graduate students in research and inspire students to work on challenging problems at the intersection of stochastic control and statistics. The educational benefits involve development of a new course and instructional materials for advanced undergraduate and graduate students.
随机系统是那些行为是随机的,不能准确预测,但可以统计分析的系统。随机最优控制在机器人学、空间探索、自治系统、金融、计算神经科学和计算生物学等领域有着广泛的应用。尽管随机最优控制理论有很长的历史,但现有的方法在动态结构、成本函数的形式以及控制策略和随机扰动之间的联系方面存在局限性。这些假设限制了这种控制方法的适用性,只适用于通常具有更简单描述的特殊类问题。该项目将把随机最优控制的适用范围扩展到更广泛的随机优化问题。该项目的教育效益包括为高级本科生和研究生开发一门新课程和教材。具体地说,本研究旨在利用正倒向随机微分方程的理论及其与倒向非线性偏微分方程解的概率表示之间的联系来开发新的、可扩展的随机控制算法。为了帮助今后在这些领域研究和采用这项工作,在该项目过程中开发的代码、数据和结果将免费分发给科学界。PIS计划集成自适应重要性采样和正反向随机微分方程的强大方法,以开发可扩展的迭代随机控制算法。此外,本研究计划将正倒向随机微分方程的理论推广和推广到随机微分对策、控制约束和Bang-bang随机控制以及非光滑代价函数下的随机控制等问题。对这些推广的工作涉及算法的发展,这将进一步将随机最优控制的适用性扩展到新的领域和新的任务。这个研究项目的教育计划有几个目标,旨在让本科生和研究生参与研究,并激励学生在随机控制和统计学的交叉点上解决具有挑战性的问题。教育方面的好处包括为高级本科生和研究生开发一门新课程和教材。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Finite-horizon covariance control of linear time-varying systems
线性时变系统的有限范围协方差控制
  • DOI:
    10.1109/cdc.2017.8264189
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Goldshtein, Maxim;Tsiotras, Panagiotis
  • 通讯作者:
    Tsiotras, Panagiotis
Optimal Covariance Control for Stochastic Systems Under Chance Constraints
  • DOI:
    10.1109/lcsys.2018.2826038
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Kazuhide Okamoto;M. Goldshtein;P. Tsiotras
  • 通讯作者:
    Kazuhide Okamoto;M. Goldshtein;P. Tsiotras
Learning Deep Stochastic Optimal Control Policies Using Forward-Backward SDEs
  • DOI:
    10.15607/rss.2019.xv.070
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ziyi Wang;M. Pereira;Evangelos A. Theodorou
  • 通讯作者:
    Ziyi Wang;M. Pereira;Evangelos A. Theodorou
Path Integral Control on Lie Groups
Stochastic Differential Games: A Sampling Approach via FBSDEs
  • DOI:
    10.1007/s13235-018-0268-4
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Ioannis Exarchos;Evangelos A. Theodorou;P. Tsiotras
  • 通讯作者:
    Ioannis Exarchos;Evangelos A. Theodorou;P. Tsiotras
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Evangelos Theodorou其他文献

100 Near-Infrared Spectroscopy as a surrogate for Vital Organ Perfusion during Cardiopulmonary Resuscitation in a Porcine Model of Cardiac Arrest
  • DOI:
    10.1016/s0300-9572(24)00414-3
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Pierre Sebastian;Manan Gandhi;Luke Feeley;Alexander Oshin;Marinos Kosmopoulos;Anthony Prisco;Danielle Burroughs;Evangelos Theodorou;Demetris Yannopoulos
  • 通讯作者:
    Demetris Yannopoulos
P114 MCH LINKS IMMUNOMETABOLSIM TO INTESTINAL INFLAMMATION
  • DOI:
    10.1053/j.gastro.2019.01.180
  • 发表时间:
    2019-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Evangelos Theodorou;Kenneth Swanson;Alan Moss;Efi Kokkotou
  • 通讯作者:
    Efi Kokkotou
emDe novo/em missense variants in phosphatidylinositol kinase PIP5KIγ underlie a neurodevelopmental syndrome associated with altered phosphoinositide signaling
磷脂酰肌醇激酶 PIP5KIγ 中的从头/错义变体是与磷酸肌醇信号改变相关的神经发育综合征的基础
  • DOI:
    10.1016/j.ajhg.2023.06.012
  • 发表时间:
    2023-08-03
  • 期刊:
  • 影响因子:
    8.100
  • 作者:
    Manuela Morleo;Rossella Venditti;Evangelos Theodorou;Lauren C. Briere;Marion Rosello;Alfonsina Tirozzi;Roberta Tammaro;Nour Al-Badri;Frances A. High;Jiahai Shi;Maria T. Acosta;Margaret Adam;David R. Adams;Raquel L. Alvarez;Justin Alvey;Laura Amendola;Ashley Andrews;Euan A. Ashley;Carlos A. Bacino;Guney Bademci;Brunella Franco
  • 通讯作者:
    Brunella Franco
Forecast accuracy and inventory performance: Insights on their relationship from the M5 competition data
预测准确性与库存绩效:从 M5 竞赛数据中对它们之间关系的见解
  • DOI:
    10.1016/j.ejor.2024.12.033
  • 发表时间:
    2025-04-16
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Evangelos Theodorou;Evangelos Spiliotis;Vassilios Assimakopoulos
  • 通讯作者:
    Vassilios Assimakopoulos
328 – Preclinical Drug Evaluation Reveals Inhibition of Nacylethanolamine Acid Amidase As a Potential Treatment for Inflammatory Bowel Disease
  • DOI:
    10.1016/s0016-5085(19)36948-3
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Evangelos Theodorou;Shrouq Farah;Katharine A. Germansky;Jonathan Glickman;Alexandros Makriyannis;Alan C. Moss;Michael S. Malamas;Efi Kokkotou
  • 通讯作者:
    Efi Kokkotou

Evangelos Theodorou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Evangelos Theodorou', 18)}}的其他基金

Collaborative Research: Real-Time Trajectory Generation Algorithms for Uncertain Autonomous Systems Based on Gaussian Processes
合作研究:基于高斯过程的不确定自治系统实时轨迹生成算法
  • 批准号:
    1936079
  • 财政年份:
    2020
  • 资助金额:
    $ 34.95万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research:Virtual Sully: Autopilot with Multilevel Adaptation for Handling Large Uncertainties
CPS:中:协作研究:Virtual Sully:具有多级适应能力的自动驾驶仪,可处理较大的不确定性
  • 批准号:
    1932288
  • 财政年份:
    2019
  • 资助金额:
    $ 34.95万
  • 项目类别:
    Standard Grant
I-Corps: Platform for Scaled Autonomous Vehicle Technology
I-Corps:大规模自动驾驶汽车技术平台
  • 批准号:
    1747688
  • 财政年份:
    2017
  • 资助金额:
    $ 34.95万
  • 项目类别:
    Standard Grant
Workshop: Learning, Perception and Control in Robotics and Humans
研讨会:机器人和人类的学习、感知和控制
  • 批准号:
    1542265
  • 财政年份:
    2015
  • 资助金额:
    $ 34.95万
  • 项目类别:
    Standard Grant

相似海外基金

BRITE Pivot: Learning-based Optimal Control of Streamflow with Potentially Infeasible Time-bound Constraints for Flood Mitigation
BRITE Pivot:基于学习的水流优化控制,具有可能不可行的防洪时限约束
  • 批准号:
    2226936
  • 财政年份:
    2023
  • 资助金额:
    $ 34.95万
  • 项目类别:
    Standard Grant
Optimal control approach to machine learning with physical explainability
具有物理可解释性的机器学习最优控制方法
  • 批准号:
    23H01436
  • 财政年份:
    2023
  • 资助金额:
    $ 34.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SCH: Spine-Hip Exoskeletons with Learning-Based Optimal Control for Low Back Pain Alleviation
SCH:具有基于学习的最佳控制的脊柱-髋部外骨骼,可缓解腰痛
  • 批准号:
    10816884
  • 财政年份:
    2023
  • 资助金额:
    $ 34.95万
  • 项目类别:
Optimal Quantum Control for Quantum Computers with Reinforcement Learning
通过强化学习实现量子计算机的最优量子控制
  • 批准号:
    575715-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 34.95万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
ERI: Improving the Learning Efficiency of Adaptive Optimal Control Systems in Information-Limited Environments
ERI:提高信息有限环境中自适应最优控制系统的学习效率
  • 批准号:
    2138206
  • 财政年份:
    2022
  • 资助金额:
    $ 34.95万
  • 项目类别:
    Standard Grant
Optimal charging control of electrified public transportation based on deep reinforcement learning
基于深度强化学习的电动化公交最优充电控制
  • 批准号:
    580528-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 34.95万
  • 项目类别:
    Alliance Grants
Machine Learning under Differential Equations: An Approach by Non-smooth Optimal Control
微分方程下的机器学习:一种非光滑最优控制方法
  • 批准号:
    20H02172
  • 财政年份:
    2020
  • 资助金额:
    $ 34.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
NMR Fingerprinting: Leveraging optimal control pulse design, tailored isotope labeling, and machine learning to study intractable proteins
NMR 指纹图谱:利用最佳控制脉冲设计、定制同位素标记和机器学习来研究棘手的蛋白质
  • 批准号:
    10591671
  • 财政年份:
    2020
  • 资助金额:
    $ 34.95万
  • 项目类别:
Avatar Based LEarning for Diabetes Optimal Control (ABLE DOC)
基于阿凡达的糖尿病最佳控制学习 (ABLE DOC)
  • 批准号:
    133975
  • 财政年份:
    2020
  • 资助金额:
    $ 34.95万
  • 项目类别:
    Knowledge Transfer Network
NMR Fingerprinting: Leveraging optimal control pulse design, tailored isotope labeling, and machine learning to study intractable proteins
NMR 指纹图谱:利用最佳控制脉冲设计、定制同位素标记和机器学习来研究棘手的蛋白质
  • 批准号:
    10594969
  • 财政年份:
    2020
  • 资助金额:
    $ 34.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了