Geometry and representation theory
几何与表示论
基本信息
- 批准号:1664317
- 负责人:
- 金额:$ 2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The conference Geometry and Representation Theory will be held January 16-27, 2017 at the Erwin Schroedinger Institute at the University of Vienna. This project is to support the participation of U.S.-based researchers in the conference. The first week of the conference will consist of a series of seven mini-courses and the second week of the conference will be a research workshop. The conference will foster a high level of interaction and collaboration among a large, international group of mathematicians at different career stages and with different backgrounds. The scientific program will address the newest and most exciting achievements in the field of geometric representation theory and will engage some of the most outstanding and active researchers working in the area. The participation of U.S.-based researchers in this event will contribute to the current strength of domestic mathematical research and support the development of the next generation of researchers in the U.S..The conference will bring together researchers in representation theory with different backgrounds and present recent developments in representation theory with connections to other areas of mathematics that exploit various branches of Lie theory, such as mathematical physics and algebraic geometry. The mini-courses will be on affine Grassmanians, the geometric Satake correspondence, spherical varieties, arc spaces, D-modules, and quantum groups. The workshop will focus on D-modules and intersection cohomology, vertex algebras, affine Grassmanians, and spherical varieties. In recent years, there has been an explosion of activity centered around these themes. Scientists who have played a crucial role in this fast-moving field will be among the invited speakers. The program will advance the dissemination of the newest results in the field and catalyze and strengthen a broad spectrum of scientific exchanges and collaborations between mathematicians from around the world working in representation theory, geometry, and related topics. More information is available on the conference website at http://imsc.uni-graz.at/baur/ESI2017/index.html.
会议几何和表示理论将于2017年1月16日至27日在维也纳大学埃尔温薛定谔研究所举行。该项目旨在支持美国的参与-研究人员在会议上。会议的第一周将包括一系列的七门迷你课程,会议的第二周将是一个研究研讨会。会议将促进一个大型的,国际数学家群体之间的高水平的互动和合作,在不同的职业阶段和不同的背景。 该科学计划将解决几何表示理论领域最新和最令人兴奋的成就,并将吸引该领域最杰出和最活跃的研究人员。美国的参与-本次活动的研究人员将有助于国内数学研究的当前实力,并支持美国下一代研究人员的发展。会议将汇集研究人员在表示理论与不同的背景和目前的最新发展表示理论与其他数学领域的连接,利用各种分支的李理论,如数学物理和代数几何。迷你课程将仿射格拉斯曼,几何佐竹对应,球形品种,弧空间,D-模块和量子群。研讨会将集中在D-模和交叉上同调,顶点代数,仿射格拉斯曼,和球形品种。近年来,围绕这些主题的活动激增。在这一快速发展的领域发挥关键作用的科学家将成为受邀演讲者之一。该计划将促进该领域最新成果的传播,并促进和加强来自世界各地的数学家在表示论,几何和相关主题方面的广泛科学交流与合作。更多信息可在会议网站http://imsc.uni-graz.at/baur/ESI2017/index.html上查阅。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor Kac其他文献
Polynomial Tau-Functions of the n-th Sawada–Kotera Hierarchy
第 n 个 Sawada-Kotera 层次结构的多项式 Tau 函数
- DOI:
10.3390/math12050681 - 发表时间:
2023 - 期刊:
- 影响因子:2.4
- 作者:
Victor Kac;J. V. D. Leur - 通讯作者:
J. V. D. Leur
Classification of Degenerate Verma Modules for E(5, 10)
- DOI:
10.1007/s00220-021-04031-z - 发表时间:
2021-03-13 - 期刊:
- 影响因子:2.600
- 作者:
Nicoletta Cantarini;Fabrizio Caselli;Victor Kac - 通讯作者:
Victor Kac
A Lie conformal superalgebra and duality of representations for emE/em(4,4)
emE/em(4,4) 的一个李共形超代数及其表示的对偶性
- DOI:
10.1016/j.aim.2023.109416 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:1.500
- 作者:
Nicoletta Cantarini;Fabrizio Caselli;Victor Kac - 通讯作者:
Victor Kac
with central chargeN
- DOI:
10.1007/bf02108332 - 发表时间:
1995-06-01 - 期刊:
- 影响因子:2.600
- 作者:
Edward Frenkel;Victor Kac;Andrey Radul;Weiqiang Wang - 通讯作者:
Weiqiang Wang
Victor Kac的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victor Kac', 18)}}的其他基金
Algebraic theory of integrable systems. Representations of affine superalgebras and mock theta functions
可积系统的代数理论。
- 批准号:
1400967 - 财政年份:2014
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Algebraic structures arising in physics
物理学中出现的代数结构
- 批准号:
0900996 - 财政年份:2009
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
Representation theory of infinite-dimensional Lie superalgebras and related algebraic structures
无限维李超代数表示论及相关代数结构
- 批准号:
0501395 - 财政年份:2005
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Representational Theory of Infinite Dimensional Lie (super) Algebras and Related Algebraic Structures
无限维李(超)代数及相关代数结构的表示论
- 批准号:
0201017 - 财政年份:2002
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
Infinite-Dimensional Lie (Super) Algebras and Related Algebraic Structures
无限维李(超)代数及相关代数结构
- 批准号:
9970007 - 财政年份:1999
- 资助金额:
$ 2万 - 项目类别:
Continuing grant
Representation Theory of Infinite-Dimensional Lie Algebras and Applications
无限维李代数表示论及其应用
- 批准号:
9622870 - 财政年份:1996
- 资助金额:
$ 2万 - 项目类别:
Continuing grant
U.S.-Italy Cooperative Research on Quantum Groups and Solutions of Soliton Equations
美意量子群及孤子方程解合作研究
- 批准号:
9015923 - 财政年份:1991
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Mathematical Sciences: Representation Theory of Infinite Dimensional Lie Algebras and Application
数学科学:无限维李代数表示论及其应用
- 批准号:
9103732 - 财政年份:1991
- 资助金额:
$ 2万 - 项目类别:
Continuing grant
Mathematical Sciences: Representation Theory of Infinite Dimensional Lie Algebras and Applications
数学科学:无限维李代数表示论及其应用
- 批准号:
8802489 - 财政年份:1988
- 资助金额:
$ 2万 - 项目类别:
Continuing grant
相似国自然基金
稀疏表示及其在盲源分离中的应用研究
- 批准号:61104053
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
约化群GL(n, F)的表示--F是非阿基米德局部域
- 批准号:10701034
- 批准年份:2007
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
信号盲处理的稀疏表示方法
- 批准号:60475004
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Representation Theory and Related Geometry
会议:表示论及相关几何
- 批准号:
2401049 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
- 批准号:
2401178 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Representation Theory and Geometry in Monoidal Categories
幺半群范畴中的表示论和几何
- 批准号:
2401184 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
- 批准号:
EP/W014882/2 - 财政年份:2023
- 资助金额:
$ 2万 - 项目类别:
Research Grant
Representation theory of affine Lie algebras and enumerative geometry of sheaves on toric surfaces and threefolds
仿射李代数表示论与复曲面和三重滑轮的枚举几何
- 批准号:
567867-2022 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Postdoctoral Fellowships
CAREER: Cluster Algebras in Representation Theory, Geometry, and Physics
职业:表示论、几何和物理学中的簇代数
- 批准号:
2143922 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
Combinatorial Representation Theory: Discovering the Interfaces of Algebra with Geometry and Topology
组合表示理论:发现代数与几何和拓扑的接口
- 批准号:
EP/W007509/1 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Research Grant
Interactions between representation theory, algebraic geometry, and physics
表示论、代数几何和物理学之间的相互作用
- 批准号:
RGPIN-2022-03135 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Discovery Grants Program - Individual
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
- 批准号:
EP/W014882/1 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Research Grant
Interactions between representation theory, algebraic geometry, and physics
表示论、代数几何和物理学之间的相互作用
- 批准号:
DGECR-2022-00437 - 财政年份:2022
- 资助金额:
$ 2万 - 项目类别:
Discovery Launch Supplement