CQIS: Coherent Spin-Phonon Interfaces with Diamond Color Centers

CQIS:与钻石色心的相干自旋声子界面

基本信息

  • 批准号:
    1810233
  • 负责人:
  • 金额:
    $ 36.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Part 1: Quantum science and technology promise the realization of powerful computers and a secure internet, which together could lead to the development of unprecedented distributed quantum computational resources. To achieve this goal, the development of systems comprising many coupled quantum bits (qubits) with the ability to perform storage, communication and multi-qubit logic operations is essential. Atomic-scale luminescent defects - color centers - in diamond have recently emerged as a leading solid-state platform that has many of these characteristics. However, approaches to efficiently couple different color centers using light have been limited by a photon loss. This is largely due to the difficulties associated with confining light to a sub-micron volume on a diamond chip. The proposed program will explore an alternative approach to qubit coupling that relies on mechanical vibrations, and will thus enable a new generation of capabilities for the field of quantum science and technology, with applications in quantum information processing and quantum metrology. The program addresses topics related to quantum engineering, quantum information science, nanofabrication, material science, nanophotonics and nanomechanics and has strong theoretical and experimental component. Therefore, it represents a unique research and educational opportunity for students at all levels. Part 2: Atomic-scale luminescent defects in diamond have recently emerged as a leading solid-state platform for realization of on-chip quantum networks. Of particular importance are negatively charged nitrogen-vacancy (NV) and silicon-vacancy (SiV) color centers that possess all the essential elements for quantum technology: storage, control and read-out. While the NV remains the best solid state quantum memory, recent work has shown that SiV is superior quantum emitter with spectrally stable and atomic-like emission. Furthermore, it has been demonstrated that SiV properties can be engineered by applying strain, induced by mechanical motion. In this program, strong spin-strain coupling in SiV will be leveraged to realize quantum networks that utilize acoustic phonons as information carriers in on-chip quantum networks. For example, by embedding SiVs inside phononic cavities and waveguides, it will be possible to engineer spin-phonon interactions and achieve controlled phonon emission and absorption by SiVs, as well as phonon routing, storage, and phonon-phonon interactions (phonon switches). This will enable realization of two-qubit quantum gates based on SiVs embedded inside mechanical resonators, in which qubit entanglement is mediated by mechanical vibration. On the other hand, by surrounding SiV with a phononic bandgap structures, phonon emission process will be suppressed thus enhancing the SiV spin coherence time by several orders of magnitude. The proposed program will pave the way for a new field of quantum acousto dyanmics that uses phonons, and mechanical vibration in general, as on-chip information carriers. Importantly, since mechanical vibrations can be engineered to couple coherently to many different qubits (spin, charge, flux, photon), proposed efforts may enable transfer of quantum states between different degrees of freedom, and lead to realization of hybrid quantum networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第一部分:量子科学和技术有望实现强大的计算机和安全的互联网,这两者共同导致前所未有的分布式量子计算资源的发展。为了实现这一目标,必须开发包括许多耦合量子位(qubit)的系统,这些量子位具有执行存储、通信和多量子位逻辑操作的能力。钻石中的原子级发光缺陷-色心-最近已经成为具有许多这些特征的领先固态平台。然而,使用光有效地耦合不同色心的方法受到光子损失的限制。这在很大程度上是由于将光限制在金刚石芯片上的亚微米体积的困难。该计划将探索依赖于机械振动的量子位耦合的替代方法,从而为量子科学和技术领域带来新一代的能力,并应用于量子信息处理和量子计量学。该计划涉及与量子工程,量子信息科学,纳米纤维,材料科学,纳米光子学和纳米力学相关的主题,具有很强的理论和实验成分。因此,它为各级学生提供了独特的研究和教育机会。 第二部分:金刚石中的原子级发光缺陷最近成为实现片上量子网络的领先固态平台。特别重要的是带负电荷的氮空位(NV)和硅空位(SiV)色心,它们拥有量子技术的所有基本元素:存储,控制和读出。虽然NV仍然是最好的固态量子存储器,但最近的工作表明,SiV是具有光谱稳定和类原子发射的上级量子发射体。此外,已经证明可以通过施加由机械运动引起的应变来设计SiV特性。在该计划中,SiV中的强自旋-应变耦合将被用来实现量子网络,该网络利用声学声子作为片上量子网络中的信息载体。例如,通过将SiV嵌入声子腔和波导内,将有可能设计自旋-声子相互作用并通过SiV实现受控的声子发射和吸收,以及声子路由,存储和声子-声子相互作用(声子开关)。这将使基于嵌入机械谐振器内的SiV的双量子比特量子门的实现成为可能,其中量子比特纠缠由机械振动介导。另一方面,通过用声子带隙结构包围SiV,声子发射过程将被抑制,从而将SiV的自旋相干时间提高几个数量级。该计划将为量子声学动力学的新领域铺平道路,该领域使用声子和一般的机械振动作为芯片上的信息载体。重要的是,由于机械振动可以被设计成与许多不同的量子比特(自旋、电荷、通量、光子)相干耦合,因此所提出的努力可能使量子态在不同自由度之间转移,并导致实现混合量子网络。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Telecommunication-wavelength two-dimensional photonic crystal cavities in a thin single-crystal diamond membrane
单晶金刚石薄膜中的电信波长二维光子晶体腔
  • DOI:
    10.1063/5.0061778
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Kuruma, Kazuhiro;Piracha, Afaq Habib;Renaud, Dylan;Chia, Cleaven;Sinclair, Neil;Nadarajah, Athavan;Stacey, Alastair;Prawer, Steven;Lončar, Marko
  • 通讯作者:
    Lončar, Marko
Quantum Interference of Electromechanically Stabilized Emitters in Nanophotonic Devices
  • DOI:
    10.1103/physrevx.9.031022
  • 发表时间:
    2019-08-09
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    Machielse, B.;Bogdanovic, S.;Loncar, M.
  • 通讯作者:
    Loncar, M.
Coherent acoustic control of a single silicon vacancy spin in diamond
  • DOI:
    10.1038/s41467-019-13822-x
  • 发表时间:
    2020-01-10
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Maity, Smarak;Shao, Linbo;Loncar, Marko
  • 通讯作者:
    Loncar, Marko
Development of hard masks for reactive ion beam angled etching of diamond
  • DOI:
    10.1364/oe.452826
  • 发表时间:
    2022-04-25
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Chia, Cleaven;Machielse, Bartholomeus;Loncar, Marko
  • 通讯作者:
    Loncar, Marko
Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators
  • DOI:
    10.1364/optica.6.001498
  • 发表时间:
    2019-12-20
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Shao, Linbo;Yu, Mengjie;Loncar, Marko
  • 通讯作者:
    Loncar, Marko
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marko Loncar其他文献

部分スロットナノビーム光機械振動子の追究
部分开槽纳米束光机械振荡器的研究
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    北 翔太;Mike Burek;Daquan Yang;Marko Loncar
  • 通讯作者:
    Marko Loncar
高機械Q値のための音叉型ナノビーム振動子の提案
高机械Q值音叉型纳米束振荡器的提案
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    北 翔太;Marko Loncar
  • 通讯作者:
    Marko Loncar
Nano-scale optical and quantum optical devices based on photonic crystals
基于光子晶体的纳米级光学和量子光学器件
High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing
高灵敏度和高 Q 因子纳米槽平行四光束光子晶体腔,用于实时、无标记传感
  • DOI:
    10.1063/1.4867254
  • 发表时间:
    2014-08
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Daquan Yang;Shota Kita;Feng Liang;Cheng Wang;Huiping Tian;Yuefeng Ji;Marko Loncar;Qimin Quan
  • 通讯作者:
    Qimin Quan
Optical characterization of high quality two dimensional photonic crystal cavities
高质量二维光子晶体腔的光学表征
  • DOI:
    10.1109/qels.2002.1031116
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Yoshie;Jelena Vuckovic;Marko Loncar;Axel Scherer;Hao Chen;D. Deppe
  • 通讯作者:
    D. Deppe

Marko Loncar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marko Loncar', 18)}}的其他基金

Equipment: MRI: Track #1 Acquisition of Photonic Wirebonding Tool for Quantum and Nanophotonics
设备: MRI:轨道
  • 批准号:
    2320265
  • 财政年份:
    2023
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
QuIC-TAQS: Integrated Lithium Niobate Quantum Photonics Platform
QuIC-TAQS:集成铌酸锂量子光子平台
  • 批准号:
    2137723
  • 财政年份:
    2021
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Continuing Grant
GOALI: Nano-Machining of Diamond Mirror for High-Power Laser Optics
GOALI:高功率激光光学器件金刚石镜的纳米加工
  • 批准号:
    1825257
  • 财政年份:
    2019
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Convergence Accelerator Phase I: Project Scoping Workshop (PSW) on Quantum Interconnects (QuIC)
融合加速器第一阶段:量子互连 (QuIC) 项目范围界定研讨会 (PSW)
  • 批准号:
    1946564
  • 财政年份:
    2019
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
PFI-TT:Development of an efficient fiber interface for Integrated lithium-niobate Modulators.
PFI-TT:开发用于集成铌酸锂调制器的高效光纤接口。
  • 批准号:
    1827720
  • 财政年份:
    2018
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
RAISE-TAQS: Towards a Quantum Cloud
RAISE-TAQS:迈向量子云
  • 批准号:
    1839197
  • 财政年份:
    2018
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
E2CDA: Type II: Collaborative Research: Nanophotonic Lithium Niobate platform for next generation energy efficient and ultrahigh bandwidth optical interconnect
E2CDA:II 类:合作研究:用于下一代节能和超高带宽光学互连的纳米光子铌酸锂平台
  • 批准号:
    1740296
  • 财政年份:
    2017
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Continuing Grant
OP Collaborative Research: Taking lithium-niobate to the nanoscale: shaping revolutionary material onto photonic microchips for developing next-generation light sources
OP 合作研究:将铌酸锂提升到纳米级:将革命性材料塑造到光子微芯片上,用于开发下一代光源
  • 批准号:
    1609549
  • 财政年份:
    2016
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
GOALI: Stable Nanomechanical Oscillators with Large f*Q Product
GOALI:具有大 f*Q 产品的稳定纳米机械振荡器
  • 批准号:
    1507508
  • 财政年份:
    2015
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
MRI: Acquisition of True 3D Laser Lithography System with Sub-Micrometer Resolution
MRI:获得亚微米分辨率的真正 3D 激光光刻系统
  • 批准号:
    1428694
  • 财政年份:
    2014
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Non-coherent网络中的纠错码及其应用
  • 批准号:
    60972011
  • 批准年份:
    2009
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Coherent quantum information platform with spin-orbit coupling in silicon
硅中自旋轨道耦合的相干量子信息平台
  • 批准号:
    RGPIN-2019-04150
  • 财政年份:
    2022
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Discovery Grants Program - Individual
Coherent quantum information platform with spin-orbit coupling in silicon
硅中自旋轨道耦合的相干量子信息平台
  • 批准号:
    RGPIN-2019-04150
  • 财政年份:
    2021
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Discovery Grants Program - Individual
Experimental investigation of coherent coupling between nuclear spin, lattice, and mechanical vibration
核自旋、晶格和机械振动之间相干耦合的实验研究
  • 批准号:
    20H02599
  • 财政年份:
    2020
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Interaction of Coherent Electronic Spin Current with Antiferromagnetic Order
相干电子自旋流与反铁磁序的相互作用
  • 批准号:
    2003914
  • 财政年份:
    2020
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Continuing Grant
Coherent quantum information platform with spin-orbit coupling in silicon
硅中自旋轨道耦合的相干量子信息平台
  • 批准号:
    RGPIN-2019-04150
  • 财政年份:
    2020
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Discovery Grants Program - Individual
Demonstrating coherent optomechanical control of spin quantum memory
展示自旋量子存储器的相干光机械控制
  • 批准号:
    RTI-2021-00659
  • 财政年份:
    2020
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Research Tools and Instruments
Coherent control of single magnetic spin in semiconductor dots using elastic wave and its application
弹性波半导体点单磁自旋相干控制及其应用
  • 批准号:
    20K21116
  • 财政年份:
    2020
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Coherent spin control in novel material platforms
新型材料平台中的相干自旋控制
  • 批准号:
    2517884
  • 财政年份:
    2020
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Studentship
Observation of spin dynamics by time-resolved coherent soft x-ray diffraction imaging
通过时间分辨相干软 X 射线衍射成像观察自旋动力学
  • 批准号:
    19K23590
  • 财政年份:
    2019
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of Spin Coherent Microscopy with Time and Space Resolutions Dedicated for Quantum Information Processes
开发专用于量子信息处理的具有时间和空间分辨率的自旋相干显微镜
  • 批准号:
    19H05621
  • 财政年份:
    2019
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了