Investigation on Differential Geometry and General Relativity
微分几何与广义相对论研究
基本信息
- 批准号:1704393
- 负责人:
- 金额:$ 5.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS 1406337, Principal Investigator: Xin Zhou The physical description of a soap film spanning a wire boundary leads to an important class of surfaces in geometry, called "minimal surface", because the energy-minimization condition that the soap film satisfies corresponds to a surface of least area, at least among nearby surfaces. Also as intrinsic geometric objects of the underlying space, minimal surfaces can be viewed as non-linear analog of the eigenstates in Quantum Mechanics. The mathematical problem that amounts to showing that every bounding wire is spanned by at least one soap film has been studied in detail for many years and admits many important generalizations. Most of the previous techniques for proving such existence properties focused on the "minimizing theory", which corresponds to finding the ground state in Quantum Mechanics. One natural but very difficult technique, called the "min-max theory", corresponding to finding the excited states in Quantum Mechanics (i.e. the eigenstates with energy higher than the ground state), has had striking recent successes, and will be one of the major objects of study in this research program. Another project will study geometric inequalities in general relativity, particularly aiming to understand the mass angular momentum inequalities for axisymmetric initial data sets which model rotating galaxies in astrophysics.More specifically, the principal investigator will study the min-max theory for minimal surfaces via both the geometric measure theory approach and the harmonic map approach. Concerning the geometric measure theory approach, some of the aspects of the min-max theory to be studied in this research program include extensions of the PI's index bound theorem beyond positive Ricci curvature conditions, as well as versions of the Almgren-Pitts min-max theory for more general ambient spaces, including manifolds with boundary and smooth metric measure spaces (where the Bakry-Emery Ricci tensor plays a role). Certain geometric problems related to the Min-max theory will be studied, such as Hersch-type estimates for higher-dimensional minimal hypersurfaces with bounded Morse index. Concerning the min-max theory via harmonic maps, the PI intends to study the issue of Morse index and branch points of the min-max minimal surfaces constructed by Colding-Minicozzi and himself, and the corresponding free boundary problem.
摘要奖:DMS 1406337,首席研究员:周欣:跨越导线边界的肥皂膜的物理描述导致了几何中一类重要的曲面,称为“极小曲面”,因为肥皂膜满足的能量最小化条件对应于一个面积最小的曲面,至少在附近的曲面中是这样。极小曲面也是底层空间的固有几何对象,可以看作是量子力学中本征态的非线性模拟。这个数学问题已经被详细研究了许多年,并承认了许多重要的概括。这个数学问题相当于证明每一条界限线都被至少一层肥皂膜跨越。以往证明这种存在性质的技术大多集中在“极小化理论”上,该理论对应于量子力学中的基态发现。与寻找量子力学中的激发态(即能量高于基态的本征态)相对应的一种自然但非常困难的技术,称为“最小-最大理论”,最近取得了惊人的成功,将成为本研究计划的主要研究对象之一。另一个项目将研究广义相对论中的几何不等式,特别是旨在了解在天体物理中模拟旋转星系的轴对称初始数据集的质量角动量不等式。更具体地说,主要研究人员将通过几何测度论方法和调和映射法研究极小表面的最小-最大理论。关于几何测度论的方法,本研究计划要研究的最小-最大值理论的一些方面包括PI的指标界定理在正Ricci曲率条件之外的扩展,以及更一般环境空间的Almgren-Pitts最小-最大值理论的版本,包括具有边界和光滑度量空间的流形(其中Bakry-Emery Ricci张量起作用)。我们将研究与Min-Max理论有关的某些几何问题,例如具有有界Morse指数的高维极小超曲面的Hersch型估计。关于调和映射的极小极大理论,PI打算研究Colding-Minicozzi和他自己构造的极小极小曲面的Morse指数和分支点问题,以及相应的自由边界问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xin Zhou其他文献
Photoresponsive Water-Dispersible Polyaniline Nanoparticles Through Template Synthesis with Copolymer Micelle Containing Coumarin Group
含香豆素基团共聚物胶束模板合成光响应水分散聚苯胺纳米粒子
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Jinqiang Jiang;Xin Zhou;Hongwu Zhang;Xiaoya Liu* - 通讯作者:
Xiaoya Liu*
Phylogenomics from low-coverage whole-genome sequencing
低覆盖率全基因组测序的系统基因组学
- DOI:
10.1111/2041-210x.13145 - 发表时间:
2019 - 期刊:
- 影响因子:6.6
- 作者:
Feng Zhang;Yinhuan Ding;Chao-Dong Zhu;Xin Zhou;Michael C. Orr;Stefan Scheu;Yun-Xia Luan - 通讯作者:
Yun-Xia Luan
[A case-control study on the risk of female breast cancer in Wuhan area].
武汉地区女性乳腺癌风险病例对照研究[J].
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Ding;J. Ma;Xin Zhou;H. Qiu;Li Fang;Shu - 通讯作者:
Shu
Assessment of Tritium Release Through Permeation and Natural Leakage in ITER CN HCCB TBS Under Normal Operations
正常运行下 ITER CN HCCB TBS 中通过渗透和自然泄漏的氚释放评估
- DOI:
10.1080/15361055.2017.1368333 - 发表时间:
2018-01 - 期刊:
- 影响因子:0.9
- 作者:
Chang An Chen;Xin Zhou;Zhanlei Wang;Bo Wang;Lingbo Liu;Xin Xiang;Yong Yao;Jiangfeng Song - 通讯作者:
Jiangfeng Song
Chromosome-level genome assembly of an important pine defoliator, Dendrolimus punctatus (Lepidoptera; Lasiocampidae)
重要的松树落叶昆虫 Dendrolimus punctatus(鳞翅目;Lasiocampidae)的染色体水平基因组组装
- DOI:
10.1111/1755-0998.13169 - 发表时间:
- 期刊:
- 影响因子:7.7
- 作者:
Sufang Zhang;Sifan Shen;Jiong Peng;Xin Zhou;Xiangbo Kong;Pingping Ren;Fu Liu;Lingling Han;Shuai Zhan;Yongping Huang;Aibing Zhang;Zhen Zhang - 通讯作者:
Zhen Zhang
Xin Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xin Zhou', 18)}}的其他基金
CAREER:New Development in Geometric Variational Theory
事业:几何变分理论的新进展
- 批准号:
2243149 - 财政年份:2022
- 资助金额:
$ 5.2万 - 项目类别:
Continuing Grant
CAREER:New Development in Geometric Variational Theory
事业:几何变分理论的新进展
- 批准号:
1945178 - 财政年份:2020
- 资助金额:
$ 5.2万 - 项目类别:
Continuing Grant
Geometric Variational Theory and Application
几何变分理论与应用
- 批准号:
1811293 - 财政年份:2018
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
Investigation on Differential Geometry and General Relativity
微分几何与广义相对论研究
- 批准号:
1406337 - 财政年份:2014
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
Riemann-Hilbert Problem and Integrable Systems
黎曼-希尔伯特问题和可积系统
- 批准号:
0602344 - 财政年份:2006
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
Riemann-Hilbert problem and integrable systems
黎曼-希尔伯特问题和可积系统
- 批准号:
0300844 - 财政年份:2003
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Inverse Scattering Theory
数学科学:逆散射理论
- 批准号:
9401403 - 财政年份:1994
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Inverse Scattering Theory
数学科学:逆散射理论
- 批准号:
9204804 - 财政年份:1992
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
相似海外基金
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
Differential geometry and integrable systems: exploiting new links
微分几何和可积系统:利用新的联系
- 批准号:
23H00083 - 财政年份:2023
- 资助金额:
$ 5.2万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Discrete differential geometry, Lie sphere geometry, discrete surfaces theory, surface representations
离散微分几何、李球几何、离散曲面理论、曲面表示
- 批准号:
22KF0255 - 财政年份:2023
- 资助金额:
$ 5.2万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Conference: Red Raider Mini-Symposium on Differential Geometry, Integrable Systems, and Applications
会议:Red Raider 微分几何、可积系统及应用小型研讨会
- 批准号:
2301994 - 财政年份:2023
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
Wall-crossing: from classical algebraic geometry to differential geometry, mirror symmetry and derived algebraic Geometry
穿墙:从经典代数几何到微分几何、镜面对称和派生代数几何
- 批准号:
EP/X032779/1 - 财政年份:2023
- 资助金额:
$ 5.2万 - 项目类别:
Fellowship
Differential Geometry and Minimal Surfaces
微分几何和最小曲面
- 批准号:
2305255 - 财政年份:2023
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
Differential Equations in Complex Riemannian Geometry
复杂黎曼几何中的微分方程
- 批准号:
2203607 - 财政年份:2022
- 资助金额:
$ 5.2万 - 项目类别:
Continuing Grant
Differential Geometry and Geometric Analysis Conference
微分几何与几何分析会议
- 批准号:
2200723 - 财政年份:2022
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
Seeking universal principle for nonequilibrium thermodynamics based on differential geometry
基于微分几何寻求非平衡热力学普遍原理
- 批准号:
22H01141 - 财政年份:2022
- 资助金额:
$ 5.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)