CAREER:New Development in Geometric Variational Theory
事业:几何变分理论的新进展
基本信息
- 批准号:2243149
- 负责人:
- 金额:$ 46.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Minimal surfaces, Constant Mean Curvature (CMC) surfaces, and Prescribed Mean Curvature (PMC) surfaces are mathematical models of soap films, soap bubbles, and capillary surfaces. These types of surfaces have always been important topics in geometry and general relativity, and have also inspired advances of many other subjects in mathematics and science. Geometric Variational Theory is the major method for proving the existence of these types of surfaces. In this research program, the PI will conduct a number of research projects on the existence of minimal, CMC, and PMC surfaces by further advancing Geometric Variational Theory. This research program also includes support for educational activities. The PI will develop new curricula for graduate research topic courses, recruit and mentor Ph. D. students and postdocs, and direct advanced undergraduate students for honors theses. The PI will also organize a summer workshop for graduate students and junior postdocs on topics related to this research program. The goal is to promote early career researchers and encourage collaborations.In the first subject, the PI will explore important applications of the recent resolution of the Multiplicity One Conjecture. In particular, the PI will investigate new ergodic properties of minimal surfaces, and the Multiplicity One Conjecture in the Simon-Smith setting and the free boundary setting. In the second subject, the PI will continue the research on Geometric Variational Theory with Lagrange multipliers. The PI anticipates to prove topological bounds for the min-max CMC surfaces in three manifolds, as well as to prove the existence of multiple CMC surfaces. PI also intends to establish the general existence theory for capillary surfaces. In the last subject, the PI will investigate existence problems and applications for minimal surfaces in singular and noncompact spaces via approximations using the free boundary min-max theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最小曲面、恒定平均曲率(CMC)曲面和规定平均曲率(PMC)曲面是肥皂膜、肥皂泡和毛细表面的数学模型。这些类型的曲面一直是几何学和广义相对论中的重要课题,也激发了数学和科学中许多其他学科的进步。几何变分理论是证明这类曲面存在性的主要方法。在这项研究计划中,PI将通过进一步推进几何变分理论,对极小,CMC和PMC曲面的存在性进行一些研究项目。这项研究计划还包括对教育活动的支持。PI将为研究生研究课题课程开发新的课程,招聘和指导博士生。学生和博士后,并指导高级本科生的荣誉论文。PI还将为研究生和初级博士后组织一个夏季研讨会,主题与本研究计划有关。在第一个主题中,PI将探索最近解决多重一猜想的重要应用。特别是,PI将研究极小曲面的新遍历性质,以及Simon-Smith设置和自由边界设置中的多重一猜想。 在第二个主题中,PI将继续研究几何变分理论与拉格朗日乘子。PI期望证明三个流形中最小-最大CMC曲面的拓扑边界,以及证明多个CMC曲面的存在性。PI还打算建立毛细表面的一般存在理论。在最后一个主题中,PI将通过使用自由边界极大极小理论的近似来研究奇异和非紧空间中极小曲面的存在性问题和应用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xin Zhou其他文献
Photoresponsive Water-Dispersible Polyaniline Nanoparticles Through Template Synthesis with Copolymer Micelle Containing Coumarin Group
含香豆素基团共聚物胶束模板合成光响应水分散聚苯胺纳米粒子
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Jinqiang Jiang;Xin Zhou;Hongwu Zhang;Xiaoya Liu* - 通讯作者:
Xiaoya Liu*
Phylogenomics from low-coverage whole-genome sequencing
低覆盖率全基因组测序的系统基因组学
- DOI:
10.1111/2041-210x.13145 - 发表时间:
2019 - 期刊:
- 影响因子:6.6
- 作者:
Feng Zhang;Yinhuan Ding;Chao-Dong Zhu;Xin Zhou;Michael C. Orr;Stefan Scheu;Yun-Xia Luan - 通讯作者:
Yun-Xia Luan
[A case-control study on the risk of female breast cancer in Wuhan area].
武汉地区女性乳腺癌风险病例对照研究[J].
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Ding;J. Ma;Xin Zhou;H. Qiu;Li Fang;Shu - 通讯作者:
Shu
Assessment of Tritium Release Through Permeation and Natural Leakage in ITER CN HCCB TBS Under Normal Operations
正常运行下 ITER CN HCCB TBS 中通过渗透和自然泄漏的氚释放评估
- DOI:
10.1080/15361055.2017.1368333 - 发表时间:
2018-01 - 期刊:
- 影响因子:0.9
- 作者:
Chang An Chen;Xin Zhou;Zhanlei Wang;Bo Wang;Lingbo Liu;Xin Xiang;Yong Yao;Jiangfeng Song - 通讯作者:
Jiangfeng Song
Chromosome-level genome assembly of an important pine defoliator, Dendrolimus punctatus (Lepidoptera; Lasiocampidae)
重要的松树落叶昆虫 Dendrolimus punctatus(鳞翅目;Lasiocampidae)的染色体水平基因组组装
- DOI:
10.1111/1755-0998.13169 - 发表时间:
- 期刊:
- 影响因子:7.7
- 作者:
Sufang Zhang;Sifan Shen;Jiong Peng;Xin Zhou;Xiangbo Kong;Pingping Ren;Fu Liu;Lingling Han;Shuai Zhan;Yongping Huang;Aibing Zhang;Zhen Zhang - 通讯作者:
Zhen Zhang
Xin Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xin Zhou', 18)}}的其他基金
CAREER:New Development in Geometric Variational Theory
事业:几何变分理论的新进展
- 批准号:
1945178 - 财政年份:2020
- 资助金额:
$ 46.15万 - 项目类别:
Continuing Grant
Geometric Variational Theory and Application
几何变分理论与应用
- 批准号:
1811293 - 财政年份:2018
- 资助金额:
$ 46.15万 - 项目类别:
Standard Grant
Investigation on Differential Geometry and General Relativity
微分几何与广义相对论研究
- 批准号:
1704393 - 财政年份:2016
- 资助金额:
$ 46.15万 - 项目类别:
Standard Grant
Investigation on Differential Geometry and General Relativity
微分几何与广义相对论研究
- 批准号:
1406337 - 财政年份:2014
- 资助金额:
$ 46.15万 - 项目类别:
Standard Grant
Riemann-Hilbert Problem and Integrable Systems
黎曼-希尔伯特问题和可积系统
- 批准号:
0602344 - 财政年份:2006
- 资助金额:
$ 46.15万 - 项目类别:
Standard Grant
Riemann-Hilbert problem and integrable systems
黎曼-希尔伯特问题和可积系统
- 批准号:
0300844 - 财政年份:2003
- 资助金额:
$ 46.15万 - 项目类别:
Standard Grant
Mathematical Sciences: Inverse Scattering Theory
数学科学:逆散射理论
- 批准号:
9401403 - 财政年份:1994
- 资助金额:
$ 46.15万 - 项目类别:
Standard Grant
Mathematical Sciences: Inverse Scattering Theory
数学科学:逆散射理论
- 批准号:
9204804 - 财政年份:1992
- 资助金额:
$ 46.15万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Development of New Gas-Releasing Molecules Using a Thiol Carrier
职业:利用硫醇载体开发新型气体释放分子
- 批准号:
2338835 - 财政年份:2024
- 资助金额:
$ 46.15万 - 项目类别:
Continuing Grant
CAREER: Mechanistic Insights Facilitate the Development of New Bond Forming Processes
职业生涯:机理见解促进新键形成工艺的开发
- 批准号:
2238881 - 财政年份:2023
- 资助金额:
$ 46.15万 - 项目类别:
Standard Grant
CAREER: Development of New Plasmonic Electrochemical Microscopy Centered Techniques for Advancing Single Entity Analysis
职业:开发以等离子体电化学显微镜为中心的新型技术,以推进单一实体分析
- 批准号:
2045839 - 财政年份:2021
- 资助金额:
$ 46.15万 - 项目类别:
Continuing Grant
CAREER: Investigating the impact of learning new skills on cognitive development and motivation for functional independence in older adulthood
职业:调查学习新技能对老年认知发展和功能独立动机的影响
- 批准号:
1848026 - 财政年份:2019
- 资助金额:
$ 46.15万 - 项目类别:
Continuing Grant
An examination of a new job stress model focusing on the development of workers' subjective career
关注员工主观职业发展的新工作压力模型检验
- 批准号:
19K24248 - 财政年份:2019
- 资助金额:
$ 46.15万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
CAREER: Fostering Innovative Scientists Through Development of Biomimetic Catalysts for Discovery of New Medicines.
职业:通过开发仿生催化剂来发现新药物,培养创新科学家。
- 批准号:
1752912 - 财政年份:2018
- 资助金额:
$ 46.15万 - 项目类别:
Continuing Grant
CAREER: Development and Characterization of New High Thermal Conductivity Materials for Energy-Efficient Electronics and Photonics
职业:用于节能电子和光子学的新型高导热材料的开发和表征
- 批准号:
1753393 - 财政年份:2018
- 资助金额:
$ 46.15万 - 项目类别:
Continuing Grant
CAREER: Development of Mesoporous Metal-Organic Frameworks as a New Type of Platform for Enzyme Immobilization
职业:开发介孔金属有机框架作为新型酶固定化平台
- 批准号:
1352065 - 财政年份:2014
- 资助金额:
$ 46.15万 - 项目类别:
Continuing Grant
Early Career: Development of a New Rock Deformation Apparatus for Investigating Earth's Upper Mantle
早期职业生涯:开发用于研究地球上地幔的新型岩石变形装置
- 批准号:
1360584 - 财政年份:2014
- 资助金额:
$ 46.15万 - 项目类别:
Standard Grant
FUSE Studios: A New, Interest-Driven Model for Engaging Youth In STEM and Career Development Through Challenges and Partnership with Industry
FUSE Studios:一种新的、兴趣驱动的模式,通过挑战和与行业的合作,让年轻人参与 STEM 和职业发展
- 批准号:
1433724 - 财政年份:2014
- 资助金额:
$ 46.15万 - 项目类别:
Standard Grant