Geometric Variational Theory and Application

几何变分理论与应用

基本信息

  • 批准号:
    1811293
  • 负责人:
  • 金额:
    $ 16.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

The main topics of this research program are mathematical models for soap films spanning a closed wire and soap bubbles. By the least action principle, the surface area of a soap film or a soap bubble will minimize among all films spanning the wire or among all bubbles including a fixed volume. The physical characterization of such surfaces says that the soap film and the soap bubble are respectively critical points of area or area subtracting enclosed volume. Mathematically, a soap film spanning a wire is called a minimal surface, and a soap bubble is called a surface of constant mean curvature (abbreviated as CMC). These two types of surfaces already caught interests by physicists and mathematicians in 1760s, and have been extensively-studied topics which also inspired the advances of many other subjects in mathematics and science. One general theory for proving the existence of such geometric objects, called the "min-max theory", has had striking recent successes, and will be the major object of study in this research program. More specifically, the PI will conduct research on the min-max theory and its applications for CMC surfaces and minimal surfaces with free boundary. In the first subject, the PI intends to prove topological bounds for the min-max CMC surfaces by Heegaard genus in a given three manifold, as well as to prove the existence of multiple CMC surfaces for a given mean curvature. The PI also plans to establish the min-max theory for constructing surfaces with mean curvature prescribed by an arbitrary smooth function, generalizing that of the CMC surfaces where the curvature functions are constants. In the second subject, the PI will investigate the compactness property, properness property, and Morse index upper bounds of the free boundary min-max minimal surfaces obtained by the PI with collaborators before; as applications, the PI plans to study minimal surfaces in singular or non-compact spaces by approximations using the free boundary solutions. The PI will finish a program on constructing min-max minimal disks with free boundary using the theory of harmonic maps.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究计划的主要课题是跨越封闭的电线和肥皂泡的肥皂膜的数学模型。根据最小作用量原理,在所有横跨金属丝的膜或包括固定体积的所有气泡中,肥皂膜或肥皂泡的表面积将最小化。这种表面的物理特性表明,肥皂膜和肥皂泡分别是面积或面积减去封闭体积的临界点。在数学上,一个肥皂膜横跨一条线被称为最小曲面,肥皂泡被称为常数平均曲率曲面(缩写为CMC)。这两类曲面早在18世纪60年代就引起了物理学家和数学家的兴趣,并得到了广泛的研究,这也激发了数学和科学中许多其他学科的进步。一个一般的理论证明存在这样的几何对象,所谓的“最小最大理论”,最近取得了惊人的成功,并将在本研究计划的主要研究对象。 更具体地说,PI将研究最小-最大理论及其在CMC曲面和具有自由边界的极小曲面上的应用。在第一个主题中,PI打算证明在给定的三个流形中的Heegaard亏格的min-max CMC曲面的拓扑界,以及证明对于给定的平均曲率的多个CMC曲面的存在性。PI还计划建立最小-最大理论,用于构造具有由任意光滑函数规定的平均曲率的曲面,推广曲率函数为常数的CMC曲面。在第二个主题中,PI将研究自由边界min-max极小曲面的紧性,适当性和莫尔斯指数上界;作为应用,PI计划通过使用自由边界解的近似来研究奇异或非紧空间中的极小曲面。PI将完成一个利用调和映射理论构建具有自由边界的最小-最大最小圆盘的项目。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Min–max theory for free boundary minimal hypersurfaces II: general Morse index bounds and applications
自由边界最小超曲面的最小-最大理论 II:一般莫尔斯指数界限和应用
  • DOI:
    10.1007/s00208-020-02096-0
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Guang, Qiang;Li, Martin Man-chun;Wang, Zhichao;Zhou, Xin
  • 通讯作者:
    Zhou, Xin
Min-max theory for networks of constant geodesic curvature
恒定测地曲率网络的最小-最大理论
  • DOI:
    10.1016/j.aim.2019.106941
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Zhou, Xin;Zhu, Jonathan J.
  • 通讯作者:
    Zhu, Jonathan J.
Generic scarring for minimal hypersurfaces along stable hypersurfaces
  • DOI:
    10.1007/s00039-021-00571-7
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Antoine Song;Xin Zhou
  • 通讯作者:
    Antoine Song;Xin Zhou
Existence of hypersurfaces with prescribed mean curvature I – generic min-max
  • DOI:
    10.4310/cjm.2020.v8.n2.a2
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Xin Zhou;Jonathan J. Zhu
  • 通讯作者:
    Xin Zhou;Jonathan J. Zhu
Min-max minimal disks with free boundary in Riemannian manifolds
  • DOI:
    10.2140/gt.2020.24.471
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Longzhi Lin;Ao Sun;Xin Zhou
  • 通讯作者:
    Longzhi Lin;Ao Sun;Xin Zhou
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xin Zhou其他文献

Photoresponsive Water-Dispersible Polyaniline Nanoparticles Through Template Synthesis with Copolymer Micelle Containing Coumarin Group
含香豆素基团共聚物胶束模板合成光响应水分散聚苯胺纳米粒子
Phylogenomics from low-coverage whole-genome sequencing
低覆盖率全基因组测序的系统基因组学
  • DOI:
    10.1111/2041-210x.13145
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Feng Zhang;Yinhuan Ding;Chao-Dong Zhu;Xin Zhou;Michael C. Orr;Stefan Scheu;Yun-Xia Luan
  • 通讯作者:
    Yun-Xia Luan
[A case-control study on the risk of female breast cancer in Wuhan area].
武汉地区女性乳腺癌风险病例对照研究[J].
Assessment of Tritium Release Through Permeation and Natural Leakage in ITER CN HCCB TBS Under Normal Operations
正常运行下 ITER CN HCCB TBS 中通过渗透和自然泄漏的氚释放评估
  • DOI:
    10.1080/15361055.2017.1368333
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Chang An Chen;Xin Zhou;Zhanlei Wang;Bo Wang;Lingbo Liu;Xin Xiang;Yong Yao;Jiangfeng Song
  • 通讯作者:
    Jiangfeng Song
Chromosome-level genome assembly of an important pine defoliator, Dendrolimus punctatus (Lepidoptera; Lasiocampidae)
重要的松树落叶昆虫 Dendrolimus punctatus(鳞翅目;Lasiocampidae)的染色体水平基因组组装
  • DOI:
    10.1111/1755-0998.13169
  • 发表时间:
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Sufang Zhang;Sifan Shen;Jiong Peng;Xin Zhou;Xiangbo Kong;Pingping Ren;Fu Liu;Lingling Han;Shuai Zhan;Yongping Huang;Aibing Zhang;Zhen Zhang
  • 通讯作者:
    Zhen Zhang

Xin Zhou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xin Zhou', 18)}}的其他基金

CAREER:New Development in Geometric Variational Theory
事业:几何变分理论的新进展
  • 批准号:
    2243149
  • 财政年份:
    2022
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Continuing Grant
CAREER:New Development in Geometric Variational Theory
事业:几何变分理论的新进展
  • 批准号:
    1945178
  • 财政年份:
    2020
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Continuing Grant
Investigation on Differential Geometry and General Relativity
微分几何与广义相对论研究
  • 批准号:
    1704393
  • 财政年份:
    2016
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Standard Grant
Investigation on Differential Geometry and General Relativity
微分几何与广义相对论研究
  • 批准号:
    1406337
  • 财政年份:
    2014
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Standard Grant
Riemann-Hilbert Problem and Integrable Systems
黎曼-希尔伯特问题和可积系统
  • 批准号:
    0602344
  • 财政年份:
    2006
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Standard Grant
Riemann-Hilbert problem and integrable systems
黎曼-希尔伯特问题和可积系统
  • 批准号:
    0300844
  • 财政年份:
    2003
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Standard Grant
Inverse Scattering Theory
逆散射理论
  • 批准号:
    0071398
  • 财政年份:
    2000
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Standard Grant
Inverse Scattering Theory
逆散射理论
  • 批准号:
    9706644
  • 财政年份:
    1997
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Inverse Scattering Theory
数学科学:逆散射理论
  • 批准号:
    9401403
  • 财政年份:
    1994
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Inverse Scattering Theory
数学科学:逆散射理论
  • 批准号:
    9204804
  • 财政年份:
    1992
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER:New Development in Geometric Variational Theory
事业:几何变分理论的新进展
  • 批准号:
    2243149
  • 财政年份:
    2022
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Continuing Grant
Geometric Variational Problems in Classical and Higher Rank Teichmuller theory
经典和高阶Teichmuller理论中的几何变分问题
  • 批准号:
    2005551
  • 财政年份:
    2020
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Continuing Grant
CAREER:New Development in Geometric Variational Theory
事业:几何变分理论的新进展
  • 批准号:
    1945178
  • 财政年份:
    2020
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Continuing Grant
Variational problems and geometric analysis for hypersurfaces with singular points, and novel development of discrete surface theory
奇点超曲面的变分问题和几何分析以及离散曲面理论的新发展
  • 批准号:
    20H01801
  • 财政年份:
    2020
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Variational Approach to Geometric Function Theory
几何函数理论的变分法
  • 批准号:
    1301570
  • 财政年份:
    2013
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Standard Grant
Teichmuller theory and Low-Dimensional Geometric Variational Problems
Teichmuller理论和低维几何变分问题
  • 批准号:
    1007383
  • 财政年份:
    2010
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Standard Grant
Singularities and balancing conditions on the theory of minimal surfaces and related geometric variational problems
最小曲面理论及相关几何变分问题的奇异性和平衡条件
  • 批准号:
    22540232
  • 财政年份:
    2010
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Teichmuller Theory and Low-Dimensional Geometric Variational Problems
Teichmuller 理论和低维几何变分问题
  • 批准号:
    0505603
  • 财政年份:
    2005
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Continuing Grant
Foundation of the Geometric Function Theory in R^n: The Governing differential Forms, Variational Integrals and Nonlinear Elasticity
R^n 中的几何函数理论基础:控制微分形式、变分积分和非线性弹性
  • 批准号:
    0070807
  • 财政年份:
    2000
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Continuing Grant
SBIR Phase I: Tolerance Analysis Using a Unifying Constraint Theory for Variational Geometric Modeling
SBIR 第一阶段:使用统一约束理论进行变分几何建模的公差分析
  • 批准号:
    9860883
  • 财政年份:
    1999
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了