SaTC: CORE: Medium: Understanding and Fortifying Machine Learning Based Security Analytics
SaTC:核心:媒介:理解和强化基于机器学习的安全分析
基本信息
- 批准号:1704701
- 负责人:
- 金额:$ 120万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Preliminary research has demonstrated that by gaining control of the input data or the computation procedures, attackers can render machine learning based security analysis ineffective. The history of cybersecurity suggests that such attacks will become more prevalent in the real-world soon. This project undertakes the challenge of developing a systematic, foundational, and practical framework to understand attacks, quantify vulnerabilities, and fortify machine learning based security analytics. The framework's effectiveness is evaluated and demonstrated in realistic, user-facing environments, using real malware datasets. This project aims to fundamentally change how machine learning based systems will be designed, developed and deployed for security and malware analytics, cybersecurity more broadly, and numerous other application areas in science, education, and technology, as the use of machine learning is ubiquitous. The findings can lead to new breeds of adaptive defense systems that are highly resilient to current and future security attacks, helping protect the nation and its citizens from cyber harm.This project combines multiple novel ideas synergistically, organized into four inter-related research thrusts: (1) machine learning theoretical framework, based on machine teaching and active learning, for understanding attacks, quantifying vulnerabilities, and measuring the capabilities of adversaries and model robustness; (2) algorithmic techniques for machine learning resilience, to adaptively counter adversaries' feature and sample manipulation strategies; (3) extensive evaluation of the identified attack and defense strategies with real and mutated malware datasets, on existing security systems, and demonstrate the improved attack resilience of the new, fortified machine learning system; (4) system-level countermeasures in real-world user-facing security analysis environments.
初步研究表明,通过控制输入数据或计算过程,攻击者可以使基于机器学习的安全分析无效。网络安全的历史表明,这种攻击很快就会在现实世界中变得更加普遍。该项目承担了开发一个系统的,基础的和实用的框架来理解攻击,量化漏洞,并加强基于机器学习的安全分析的挑战。该框架的有效性进行评估,并在现实的,面向用户的环境中,使用真实的恶意软件数据集证明。该项目旨在从根本上改变基于机器学习的系统的设计,开发和部署方式,以用于安全和恶意软件分析,更广泛的网络安全以及科学,教育和技术中的许多其他应用领域,因为机器学习的使用无处不在。这些发现可能会导致新品种的自适应防御系统,对当前和未来的安全攻击具有高度弹性,有助于保护国家及其公民免受网络伤害。该项目将多种新颖的想法协同结合起来,分为四个相互关联的研究方向:(1)机器学习理论框架,基于机器教学和主动学习,用于理解攻击,量化漏洞,以及测量对手的能力和模型鲁棒性;(2)用于机器学习弹性的算法技术,以自适应地对抗对手的特征和样本操纵策略;(3)在现有的安全系统上利用真实的和突变的恶意软件数据集对所识别的攻击和防御策略进行广泛的评估,并证明新的安全系统的改进的攻击弹性,强化的机器学习系统;(4)现实世界中面向用户的安全分析环境中的系统级对策。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Regularizing Neural Networks via Minimizing Hyperspherical Energy
- DOI:10.1109/cvpr42600.2020.00695
- 发表时间:2019-06
- 期刊:
- 影响因子:0
- 作者:Rongmei Lin;Weiyang Liu;Zhen Liu;Chen Feng-;Zhiding Yu;J. Rehg;Li Xiong;Le Song
- 通讯作者:Rongmei Lin;Weiyang Liu;Zhen Liu;Chen Feng-;Zhiding Yu;J. Rehg;Li Xiong;Le Song
SkeletonVis: Interactive Visualization for Understanding Adversarial Attacks on Human Action Recognition Models
SkeletonVis:用于理解人类行为识别模型的对抗性攻击的交互式可视化
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Park, Haekyu and
- 通讯作者:Park, Haekyu and
NeuralDivergence: Exploring and Understanding Neural Networks by Comparing Activation Distributions
NeuralDivergence:通过比较激活分布探索和理解神经网络
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Park, Haekyu;Hohman, Fred;Chau, Duen Horng
- 通讯作者:Chau, Duen Horng
NeuroCartography: Scalable Automatic Visual Summarization of Concepts in Deep Neural Networks
- DOI:10.1109/tvcg.2021.3114858
- 发表时间:2021-08
- 期刊:
- 影响因子:5.2
- 作者:Haekyu Park;Nilaksh Das;Rahul Duggal;Austin P. Wright;Omar Shaikh;Fred Hohman;Duen Horng Chau
- 通讯作者:Haekyu Park;Nilaksh Das;Rahul Duggal;Austin P. Wright;Omar Shaikh;Fred Hohman;Duen Horng Chau
Adversarial Attack on Graph Structured Data
- DOI:
- 发表时间:2018-06
- 期刊:
- 影响因子:0
- 作者:H. Dai;Hui Li-;Tian Tian-Tian;Xin Huang;L. Wang;Jun Zhu;Le Song
- 通讯作者:H. Dai;Hui Li-;Tian Tian-Tian;Xin Huang;L. Wang;Jun Zhu;Le Song
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Duen Horng Chau其他文献
TgrApp: Anomaly Detection and Visualization of Large-Scale Call Graphs
TgrApp:大规模调用图的异常检测和可视化
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
M. Cazzolato;Saranya Vijayakumar;Xinyi Zheng;Namyong Park;Meng;Duen Horng Chau;Pedro Fidalgo;Bruno Lages;A. Traina;C. Faloutsos - 通讯作者:
C. Faloutsos
Visual Exploration of Literature with Argo Scholar
与Argo Scholar一起进行文学视觉探索
- DOI:
10.1145/3511808.3557177 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
K. Li;Haoyang Yang;Evan Montoya;Anish Upadhayay;Zhiyan Zhou;Jon Saad;Duen Horng Chau - 通讯作者:
Duen Horng Chau
Mining large graphs: Algorithms, inference, and discoveries
挖掘大图:算法、推理和发现
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
U. Kang;Duen Horng Chau;C. Faloutsos - 通讯作者:
C. Faloutsos
STEPS: A Spatio-temporal Electric Power Systems Visualization
STEPS:时空电力系统可视化
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Robert S. Pienta;Leilei Xiong;S. Grijalva;Duen Horng Chau;Minsuk Kahng - 通讯作者:
Minsuk Kahng
TopicScape: Semantic Navigation of Document Collections
TopicScape:文档集合的语义导航
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Jacob Eisenstein;Duen Horng Chau;A. Kittur;E. Xing - 通讯作者:
E. Xing
Duen Horng Chau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Duen Horng Chau', 18)}}的其他基金
EAGER: SSDIM: Leveraging Point Processes and Mean Field Games Theory for Simulating Data on Interdependent Critical Infrastructures
EAGER:SSDIM:利用点过程和平均场博弈论来模拟相互依赖的关键基础设施上的数据
- 批准号:
1745382 - 财政年份:2017
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
EAGER: Asynchronous Event Models for State-Topology Co-Evolution of Temporal Networks
EAGER:时态网络状态拓扑协同演化的异步事件模型
- 批准号:
1639792 - 财政年份:2016
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Human-Computer Graph Exploration and Tele-Discovery
III:媒介:协作研究:人机图探索与远程发现
- 批准号:
1563816 - 财政年份:2016
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
TWC: Small: Collaborative: Cracking Down Online Deception Ecosystems
TWC:小型:协作:打击在线欺骗生态系统
- 批准号:
1526254 - 财政年份:2015
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
EAGER: Scaling Up Machine Learning with Virtual Memory
EAGER:利用虚拟内存扩展机器学习
- 批准号:
1551614 - 财政年份:2015
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
相似国自然基金
胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
- 批准号:82371765
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
- 批准号:22303037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于外泌体精准调控的“核-壳”(core-shell)同步血管化骨组织工程策略的应用与机制探讨
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
- 批准号:92053110
- 批准年份:2020
- 资助金额:70.0 万元
- 项目类别:重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
- 批准号:81902805
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
- 批准号:41973063
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
- 批准号:31900138
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
CORDEX-CORE区域气候模拟与预估研讨会
- 批准号:41981240365
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
SaTC: CORE: Medium: Testing the causal influence of social media on well-being and animosity
SaTC:核心:中:测试社交媒体对幸福感和敌意的因果影响
- 批准号:
2334148 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330941 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
SaTC: CORE: Medium: Increasing user autonomy and advertiser and platform responsibility in online advertising
SaTC:核心:中:增加在线广告中的用户自主权以及广告商和平台责任
- 批准号:
2318290 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
SaTC: CORE: Medium: Collaborative: Hardening Off-the-Shelf Software Against Side Channel Attacks
SaTC:核心:媒介:协作:强化现成软件以抵御侧通道攻击
- 批准号:
2425665 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Understanding the Impact of Privacy Interventions on the Online Publishing Ecosystem
协作研究:SaTC:核心:媒介:了解隐私干预对在线出版生态系统的影响
- 批准号:
2237329 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Securing Interactions between Driver and Vehicle Using Batteries
合作研究:SaTC:核心:中:使用电池确保驾驶员和车辆之间的交互安全
- 批准号:
2245224 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Understanding and Combatting Impersonation Attacks and Data Leakage in Online Advertising
协作研究:SaTC:核心:媒介:理解和打击在线广告中的冒充攻击和数据泄露
- 批准号:
2247516 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant