EAGER: Asynchronous Event Models for State-Topology Co-Evolution of Temporal Networks
EAGER:时态网络状态拓扑协同演化的异步事件模型
基本信息
- 批准号:1639792
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-15 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this research project is to develop probabilistic models and the related machine learning algorithms for modeling network evolution and dynamics. The research lays theoretic foundations and provides practical tools for scientists to control networks in order to achieve desirable outcomes. Although the research is widely applicable, the research team primarily considers two application areas: social networks and P2P microfinance. In social networks, this project brings practical values to the Internet industry by better understanding and modeling of user behaviors and their impacts on social ties and social group formation. For P2P microfinance, this project has the potential to better engage not-for-profit lenders and thus to help small business in developing countries. Furthermore, the research provides materials and contents for both undergraduate and graduate education and helps students develop interdisciplinary mindsets and tools needed to tackle real-world problems. This proposed research aims to develop machine learning theory and algorithms for networked asynchronous and interdependent event streams arising from modern applications. The researchers especially emphasize methodology that can handle temporal networks when the underlying network structures are undergoing substantial changes. One major theme of the proposal is the modeling of the interplay between network node dynamics and network topology dynamics, or network co-evolution. The researchers propose a novel framework based on multivariate point processes for modeling and analyzing event data. The methods significantly expand the application area of conventional machine learning techniques. One example is to answer the question ``who will do what and when'', which is critical to event sequence modeling in network data analysis where traditional machine learning algorithms are difficult to apply.
该研究项目的目的是开发概率模型和相关的机器学习算法,用于建模网络演化和动态。该研究为科学家控制网络以达到预期效果奠定了理论基础,并提供了实用工具。虽然该研究具有广泛的适用性,但研究团队主要考虑两个应用领域:社交网络和P2P小额信贷。在社交网络中,该项目通过更好地理解和建模用户行为及其对社会关系和社会群体形成的影响,为互联网行业带来了实用价值。对于P2P小额信贷,该项目有可能更好地吸引非营利贷款人,从而帮助发展中国家的小企业。此外,该研究为本科和研究生教育提供了材料和内容,并帮助学生发展解决现实问题所需的跨学科思维方式和工具。 这项研究旨在为现代应用中产生的网络异步和相互依赖的事件流开发机器学习理论和算法。研究人员特别强调,当底层网络结构发生重大变化时,可以处理时间网络的方法。该提案的一个主要主题是对网络节点动态和网络拓扑动态之间的相互作用或网络协同进化进行建模。研究人员提出了一种基于多变量点过程的新框架,用于建模和分析事件数据。这些方法显着扩展了传统机器学习技术的应用领域。一个例子是回答“谁将在何时做什么”的问题,这对于传统机器学习算法难以应用的网络数据分析中的事件序列建模至关重要。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DyRep: Learning Representations over Dynamic Graphs
- DOI:
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Rakshit S. Trivedi;Mehrdad Farajtabar;P. Biswal;H. Zha
- 通讯作者:Rakshit S. Trivedi;Mehrdad Farajtabar;P. Biswal;H. Zha
Decoupled Learning for Factorial Marked Temporal Point Processes
- DOI:10.1145/3219819.3220035
- 发表时间:2018-01
- 期刊:
- 影响因子:0
- 作者:Weichang Wu;Junchi Yan;Xiaokang Yang;H. Zha
- 通讯作者:Weichang Wu;Junchi Yan;Xiaokang Yang;H. Zha
Learning Conditional Generative Models for Temporal Point Processes
- DOI:10.1609/aaai.v32i1.12072
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:Shuai Xiao;Hongteng Xu;Junchi Yan;Mehrdad Farajtabar;Xiaokang Yang;Le Song;H. Zha
- 通讯作者:Shuai Xiao;Hongteng Xu;Junchi Yan;Mehrdad Farajtabar;Xiaokang Yang;Le Song;H. Zha
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Duen Horng Chau其他文献
TgrApp: Anomaly Detection and Visualization of Large-Scale Call Graphs
TgrApp:大规模调用图的异常检测和可视化
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
M. Cazzolato;Saranya Vijayakumar;Xinyi Zheng;Namyong Park;Meng;Duen Horng Chau;Pedro Fidalgo;Bruno Lages;A. Traina;C. Faloutsos - 通讯作者:
C. Faloutsos
Visual Exploration of Literature with Argo Scholar
与Argo Scholar一起进行文学视觉探索
- DOI:
10.1145/3511808.3557177 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
K. Li;Haoyang Yang;Evan Montoya;Anish Upadhayay;Zhiyan Zhou;Jon Saad;Duen Horng Chau - 通讯作者:
Duen Horng Chau
Mining large graphs: Algorithms, inference, and discoveries
挖掘大图:算法、推理和发现
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
U. Kang;Duen Horng Chau;C. Faloutsos - 通讯作者:
C. Faloutsos
STEPS: A Spatio-temporal Electric Power Systems Visualization
STEPS:时空电力系统可视化
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Robert S. Pienta;Leilei Xiong;S. Grijalva;Duen Horng Chau;Minsuk Kahng - 通讯作者:
Minsuk Kahng
TopicScape: Semantic Navigation of Document Collections
TopicScape:文档集合的语义导航
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Jacob Eisenstein;Duen Horng Chau;A. Kittur;E. Xing - 通讯作者:
E. Xing
Duen Horng Chau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Duen Horng Chau', 18)}}的其他基金
SaTC: CORE: Medium: Understanding and Fortifying Machine Learning Based Security Analytics
SaTC:核心:媒介:理解和强化基于机器学习的安全分析
- 批准号:
1704701 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
EAGER: SSDIM: Leveraging Point Processes and Mean Field Games Theory for Simulating Data on Interdependent Critical Infrastructures
EAGER:SSDIM:利用点过程和平均场博弈论来模拟相互依赖的关键基础设施上的数据
- 批准号:
1745382 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Human-Computer Graph Exploration and Tele-Discovery
III:媒介:协作研究:人机图探索与远程发现
- 批准号:
1563816 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
TWC: Small: Collaborative: Cracking Down Online Deception Ecosystems
TWC:小型:协作:打击在线欺骗生态系统
- 批准号:
1526254 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Scaling Up Machine Learning with Virtual Memory
EAGER:利用虚拟内存扩展机器学习
- 批准号:
1551614 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Physics-inspired Machine Learning with Sparse and Asynchronous p-bits
职业:利用稀疏和异步 p 位进行物理启发的机器学习
- 批准号:
2237357 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
OAC Core: LABIOS: Storage Acceleration via Data Labeling and Asynchronous I/O
OAC 核心:LABIOS:通过数据标签和异步 I/O 进行存储加速
- 批准号:
2313154 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Asynchronous Scientific Continuous Computations Exploiting Disaggregation (ASCCED)
利用分解的异步科学连续计算 (ASCCED)
- 批准号:
EP/X01794X/1 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Asynchronous Open Online Course Addressing Structural Racism and Discrimination to Reduce Disparities
异步开放在线课程解决结构性种族主义和歧视以减少差异
- 批准号:
10649862 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Large-scale sparse learning using asynchronous architecture for interpretable model
使用异步架构进行可解释模型的大规模稀疏学习
- 批准号:
23K11213 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of an Asynchronous Cellular Automata Based on Termites
基于白蚁的异步元胞自动机的开发
- 批准号:
23KJ2050 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of Architectural Educational Reference Tools in Remote and Asynchronous Environments using Object VR
使用对象 VR 在远程和异步环境中开发建筑教育参考工具
- 批准号:
23K02643 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High throughput asynchronous digital logic implementation flow
高吞吐量异步数字逻辑实现流程
- 批准号:
10074333 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant for R&D
Extension of computer vision methods to asynchronous image sensors
将计算机视觉方法扩展到异步图像传感器
- 批准号:
23K16902 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Early-Career Scientists