NSF/CBET-BSF: Processing of Polar Absorbers to Enable Hot-Carrier All-Oxide Transparent Solar Cells

NSF/CBET-BSF:加工极性吸收剂以实现热载流子全氧化物透明太阳能电池

基本信息

  • 批准号:
    1705440
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Due to an inexhaustible supply of energy from the sun, conversion of sunlight into electricity by photovoltaics (PVs) is a promising long-term sustainable energy technology. In this NSF-Binational Science Foundation (BSF) project, Drexel University, in partnership with Bar-Ilan University in Israel, will conduct a fundamental research study on new materials design and synthesis strategy for producing optically-transparent semiconductors for efficient solar energy conversion. The new materials will be obtained through a combination of computational design of materials and advanced synthesis, processing, and property measurements. Devices will be prepared and evaluated using these materials, which will simultaneously and efficiently absorb ultraviolet and infrared sunlight, but transmit visible light, and convert the absorbed light efficiently into power. The new solar energy absorber paradigm, which relies on inexpensive, earth-abundant, non-toxic and stable materials, has the potential to transform PV solar power conversion capacity using already existing building windows and other building surfaces. The investigations undertaken in this project will advance fundamental knowledge on the photocurrent generation mechanism that promises to dramatically enhance solar power conversion efficiencies of photovoltaic cells based on ferroelectric oxides. This project also serves as ideal training for a cadre of talented young engineers, including those from historically underrepresented groups, to tackle important fundamental materials engineering challenges and participate in outreach activities as part of collaborative, interdisciplinary effort.The novel, highly-efficient hot-carrier mechanism of solar energy conversion is promising for the use of ferroelectric oxide films in single absorber, transparent photovoltaics. This project will result in fundamental knowledge of the relationships between processing and the structural, optical and photo-generated charge transport properties and performance of transparent photovoltaic absorber films. The approach of the project uses a series of tightly coupled experimental and theoretical investigations. This research program combines aspects of advanced materials processing and device fabrication with fundamental materials design and understanding to achieve the unusual combination of infrared and ultraviolet light absorption, visible light transparency and functional ferroelectric properties for enabling novel transparent hot-carrier solar cells with efficiencies possibly beyond the Shockley-Queisser limit. Deposition and post-deposition processing protocols that enable the use of the semiconducting ferroelectric-type films for transparent photovoltaic absorbers will be researched, along with device fabrication, testing and analysis. While computational methods have been used for materials discovery, their use for fundamental studies of processing of cation-doped and oxygen vacancy-rich solid-solution semiconducting ferroelectric oxide perovskites will be one of the first examples for theory-guided processing research. Building on the collaborations between the PI and his Israel-based collaborator, comparison of theory and experiment will provide feedback for the physical vapor deposition-based film synthesis effort and will enhance the accuracy of the first principles density functional theoretical-based computational approach.
由于太阳能取之不尽用之不竭,通过光伏发电(PV)将太阳光转化为电能是一种有前途的长期可持续能源技术。在这个NSF-两国科学基金会(BSF)项目中,德雷克塞尔大学将与以色列的Bar-Ilan大学合作,对新材料设计和合成策略进行基础研究,以生产用于高效太阳能转换的光学透明半导体。新材料将通过材料的计算设计和先进的合成,加工和性能测量相结合来获得。 将使用这些材料制备和评估设备,这些材料将同时有效地吸收紫外线和红外线太阳光,但透射可见光,并将吸收的光有效地转化为电能。新的太阳能吸收器范例依赖于廉价、地球资源丰富、无毒和稳定的材料,有可能利用现有的建筑窗户和其他建筑表面改变光伏太阳能转换能力。在这个项目中进行的调查将推进光电流产生机制的基础知识,有望大大提高基于铁电氧化物的光伏电池的太阳能转换效率。该项目也是一个理想的培训骨干人才的年轻工程师,包括那些从历史上代表性不足的群体,以解决重要的基础材料工程的挑战,并参与推广活动的一部分,合作,跨学科的努力。新颖,高效的太阳能热载流子转换机制是有希望的铁电氧化物薄膜中使用的单吸收,透明的光致发光。该项目将导致加工和透明光伏吸收膜的结构,光学和光生电荷传输特性和性能之间的关系的基础知识。该项目的方法使用了一系列紧密耦合的实验和理论研究。该研究计划将先进材料加工和器件制造与基础材料设计和理解相结合,以实现红外和紫外光吸收,可见光透明度和功能铁电特性的不寻常组合,使新型透明热载流子太阳能电池的效率可能超过Shockley-Queisser极限。沉积和沉积后的处理协议,使使用的半导体铁电型薄膜的透明光伏吸收器将进行研究,沿着设备的制造,测试和分析。虽然计算方法已被用于材料发现,但它们用于阳离子掺杂和富氧空位的半导体铁电氧化物钙钛矿固溶体加工的基础研究将是理论指导加工研究的首批例子之一。基于PI和他的以色列合作者之间的合作,理论和实验的比较将为基于物理气相沉积的薄膜合成工作提供反馈,并将提高基于第一原理密度泛函理论的计算方法的准确性。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Infrared‐to‐ultraviolet light‐absorbing BaTiO 3 ‐based ferroelectric photovoltaic materials
  • DOI:
    10.1111/jace.16307
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Liyan Wu;A. Akbashev;A. Podpirka;J. Spanier;P. Davies
  • 通讯作者:
    Liyan Wu;A. Akbashev;A. Podpirka;J. Spanier;P. Davies
Direct observation of shift and ballistic photovoltaic currents
  • DOI:
    10.1126/sciadv.aau5588
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Burger, Aaron M.;Agarwal, Radhe;Spanier, Jonathan E.
  • 通讯作者:
    Spanier, Jonathan E.
Shift photovoltaic current and magnetically induced bulk photocurrent in piezoelectric sillenite crystals
  • DOI:
    10.1103/physrevb.102.081113
  • 发表时间:
    2020-08-18
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Burger, Aaron M.;Gao, Lingyuan;Fridkin, Vladimir M.
  • 通讯作者:
    Fridkin, Vladimir M.
Resonant domain-wall-enhanced tunable microwave ferroelectrics
  • DOI:
    10.1038/s41586-018-0434-2
  • 发表时间:
    2018-08-30
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Gu, Zongquan;Pandya, Shishir;Spanier, Jonathan E.
  • 通讯作者:
    Spanier, Jonathan E.
Ultrahigh anharmonicity low-permittivity tunable nanocrystalline thin-film BaTi2O5
  • DOI:
    10.1016/j.actamat.2021.116712
  • 发表时间:
    2021-03-05
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Falmbigl, Matthias;Golovina, Iryna S.;Spanier, Jonathan E.
  • 通讯作者:
    Spanier, Jonathan E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Spanier其他文献

Jonathan Spanier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Spanier', 18)}}的其他基金

Collaborative Research: Chemisorption-Induced Ultraviolet Quantum Well Optoelectronic Materials
合作研究:化学吸附诱导的紫外量子阱光电材料
  • 批准号:
    1608887
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
I-Corps: Low-energy manufacturing-scalable complex oxide thin film technology
I-Corps:低能耗制造-可扩展的复合氧化物薄膜技术
  • 批准号:
    1403463
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NEB: Meta-Capacitance and Spatially Periodic Electronic Excitation Devices (MC-SPEEDs)
NEB:元电容和空间周期电子激励装置 (MC-SPEED)
  • 批准号:
    1124696
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
GOALI: Low-Dimensional Plasmonic Semiconductor Materials
目标:低维等离子体半导体材料
  • 批准号:
    0907381
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of System for the Integration of Raman Scattering, Luminescence and Scanning Electron Microscopies
MRI:获取拉曼散射、发光和扫描电子显微镜集成系统
  • 批准号:
    0722845
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
  • 批准号:
    EP/X040828/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
CBET-EPSRC Sustainable bioplastics prepared by ultrasonic treatment with low CO2 footprint
CBET-EPSRC 通过超声波处理制备的可持续生物塑料,二氧化碳足迹低
  • 批准号:
    EP/X039773/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
CBET-EPSRC: Deep Learning Closure Models for Large-Eddy Simulation of Unsteady Aerodynamics
CBET-EPSRC:用于非定常空气动力学大涡模拟的深度学习收敛模型
  • 批准号:
    EP/X031640/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Collaborative Research: ECO-CBET: Multi-scale design of liquid hydrogen carriers for spatio-temporal balancing of renewable energy systems
合作研究:ECO-CBET:用于可再生能源系统时空平衡的液氢载体的多尺度设计
  • 批准号:
    2318618
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: ECO-CBET: Multi-scale design of liquid hydrogen carriers for spatio-temporal balancing of renewable energy systems
合作研究:ECO-CBET:用于可再生能源系统时空平衡的液氢载体的多尺度设计
  • 批准号:
    2318619
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: ECO-CBET: Multi-scale design of liquid hydrogen carriers for spatio-temporal balancing of renewable energy systems
合作研究:ECO-CBET:用于可再生能源系统时空平衡的液氢载体的多尺度设计
  • 批准号:
    2318617
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: ECO-CBET: Putting entropy to work: Leveraging the role of water organization in peptide binding events to selectively recover rare earths
合作研究:ECO-CBET:让熵发挥作用:利用水组织在肽结合事件中的作用来选择性回收稀土
  • 批准号:
    2346163
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: ECO-CBET: Plasma-Assisted Dehalogenation of Persistent Halogen-Containing Waste Streams
合作研究:ECO-CBET:持久性含卤素废物流的等离子体辅助脱卤
  • 批准号:
    2318495
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
ECO-CBET: GOALI: Condensing water from the air for building dehumidification and decarbonization using thermo-responsive desiccants
ECO-CBET:GOALI:使用热敏干燥剂从空气中冷凝水,用于建筑除湿和脱碳
  • 批准号:
    2318720
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CBET-EPSRC: Direct methane conversion into valuable oxygenates via tandem catalysis
CBET-EPSRC:通过串联催化将甲烷直接转化为有价值的含氧化合物
  • 批准号:
    2302161
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了