Collaborative Research: Chemisorption-Induced Ultraviolet Quantum Well Optoelectronic Materials

合作研究:化学吸附诱导的紫外量子阱光电材料

基本信息

  • 批准号:
    1608887
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Nontechnical Description: Next-generation devices require new classes of materials capable of advanced (multi-) functional response. In this regard, complex-oxide materials and interfaces have the potential for far-reaching impact. Of particular interest are opportunities to harness novel light-matter interactions to enable a range of applications. Controlling such interactions requires exacting production of materials and in-depth understanding of the mechanism(s) underlying the phenomena. For example, semiconductor heterostructures drive optoelectronics for solid-state lighting, communications, computing, and sensing and the subsequent introduction of nitride- and simple oxide-based materials has helped pushed such technologies into the ultraviolet emission range. New functionalities involving ultraviolet-emitting devices may enable faster encoding and manipulation of information, new modes of chemical detection and sensing, and more efficient solid-state lighting. This project explores opportunities for on-demand complex oxide-electronics through local material reconfiguration. It builds upon discoveries of conductivity at the interface of two insulators, and demonstration of reversible, local manipulation of conductance to produce tunable ultraviolet-light emission from such materials. The project actively promotes the training of next-generation scientists and engineers in technologically important and relevant fields critical for the sustained economic vitality of the United States, focuses efforts on the mentoring and training of students from historically underrepresented groups, and provides research co-op and international research experiences for student trainees.Technical Description: In this project, a new optoelectronic materials paradigm is defined by the coupling of spatially- and chemically-selective chemisorption with sub-surface quantum well(s) formed at the interface(s) of two band insulators. Symmetry-breaking and electrostatic potential mismatch between constituent semiconductors at an interface results in novel phenomena inaccessible in the bulk. This emergent phenomena can, in some systems, be tuned extensively since a surface, and to some extent, an interface, is free to reconstruct structurally and electronically. Bringing a surface or sub-surface into equilibrium with a controlled environment enables local, reversible control of the electronic phase or functional state. The effects of adsorbate type and locality, of a symmetry-lowering field on the strength, energy, and spatial response of ultraviolet luminescence from one or more distinct sub-surface, two-dimensional electron liquid(s) exhibiting electron correlations are studied. In particular, the activities focus on understanding and ultimately controlling several distinguishing features: 1) how the steady-state ultraviolet light emission intensity changes in response to different adsorbates; 2) how the physical properties of the model system, as probed by changes in spectral emission, respond to externally applied fields; 3) how the ultraviolet luminescence, including locality and stability, can be controlled with external stimuli; and 4) what the introduction of multiple, closely-spaced quantum wells and/or other oxide heterojunction materials does to the response. These investigations advance understanding of radiative recombination in new model optoelectronic ultraviolet light-emitting systems defined not by bulk, interfacial or surface properties alone, but by coupling of sub-surface interfacial quantum well electronic structure to surface chemisorption.
非技术描述:下一代器械需要能够实现高级(多)功能响应的新型材料。在这方面,复合氧化物材料和界面具有深远影响的潜力。特别令人感兴趣的是利用新的光物质相互作用来实现一系列应用的机会。控制这种相互作用需要严格的材料生产和深入了解现象背后的机制。例如,半导体异质结构驱动用于固态照明、通信、计算和传感的光电子学,随后引入基于氮化物和简单氧化物的材料有助于将这些技术推向紫外线发射范围。涉及紫外线发射设备的新功能可以实现更快的信息编码和操作,新的化学检测和传感模式以及更有效的固态照明。该项目通过本地材料重新配置探索按需复杂氧化物电子产品的机会。它建立在两个绝缘体的界面处的导电性的发现的基础上,并且证明了可逆的、局部操纵导电性以从这些材料产生可调谐的紫外光发射。该项目积极促进对美国持续经济活力至关重要的技术重要性和相关领域的下一代科学家和工程师的培训,重点关注对历史上代表性不足的群体的学生的指导和培训,并为学生学员提供研究合作和国际研究经验。技术描述:在这个项目中,一个新的光电材料范例是通过空间和化学选择性化学吸附与形成在两个带绝缘体的界面处的亚表面量子阱的耦合来定义的。对称性破坏和静电势之间的不匹配的组成半导体在界面上的结果在体中无法访问的新现象。在某些系统中,这种涌现的现象可以被广泛地调整,因为表面,在某种程度上,界面,可以自由地在结构上和电子上重建。使表面或亚表面与受控环境平衡,使得能够局部可逆地控制电子相或功能状态。本文研究了吸附质类型和位置、磁场强度对一个或多个不同亚表面二维电子液体紫外发光强度、能量和空间响应的影响。特别是,这些活动侧重于理解和最终控制几个显著特征:1)稳态紫外光发射强度如何响应不同的吸附物而变化; 2)通过光谱发射的变化探测的模型系统的物理性质如何响应外部施加的场; 3)如何通过外部刺激控制紫外发光,包括局部性和稳定性;以及4)引入多个紧密间隔的量子威尔斯和/或其他氧化物异质结材料对响应有何影响。这些研究促进了对新型光电紫外发光系统中辐射复合的理解,该系统不仅由体、界面或表面性质定义,而且由亚表面界面量子阱电子结构与表面化学吸附的耦合定义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Spanier其他文献

Jonathan Spanier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Spanier', 18)}}的其他基金

NSF/CBET-BSF: Processing of Polar Absorbers to Enable Hot-Carrier All-Oxide Transparent Solar Cells
NSF/CBET-BSF:加工极性吸收剂以实现热载流子全氧化物透明太阳能电池
  • 批准号:
    1705440
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
I-Corps: Low-energy manufacturing-scalable complex oxide thin film technology
I-Corps:低能耗制造-可扩展的复合氧化物薄膜技术
  • 批准号:
    1403463
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NEB: Meta-Capacitance and Spatially Periodic Electronic Excitation Devices (MC-SPEEDs)
NEB:元电容和空间周期电子激励装置 (MC-SPEED)
  • 批准号:
    1124696
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
GOALI: Low-Dimensional Plasmonic Semiconductor Materials
目标:低维等离子体半导体材料
  • 批准号:
    0907381
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of System for the Integration of Raman Scattering, Luminescence and Scanning Electron Microscopies
MRI:获取拉曼散射、发光和扫描电子显微镜集成系统
  • 批准号:
    0722845
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
  • 批准号:
    AH/X011747/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
  • 批准号:
    502555
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
  • 批准号:
    DE240100161
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
  • 批准号:
    2902365
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
  • 批准号:
    EP/Y031962/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
  • 批准号:
    EP/Y033124/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
  • 批准号:
    EP/Y033183/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
  • 批准号:
    NE/Y005457/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了