Controlled Growth and Optoelectronic Characterization of Crystalline Oriented Organic P-N Junction Nanostructures
晶体取向有机 P-N 结纳米结构的控制生长和光电表征
基本信息
- 批准号:1706633
- 负责人:
- 金额:$ 41.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Organic semiconductors and their use in electronic devices such as solar cells are in high demand due to low cost fabrication, mechanical flexibility, and use of commonly sourced materials. Organic photovoltaic cells (OPVs) have already demonstrated power conversion efficiencies of 10%. However, to continue producing highly efficient devices, it will be critical to understand and control molecular orientation and microstructure at the interfaces of the device at the material level. The outcome from this program will have a broad impact in research areas striving to understand crystal chemistry, molecular packing, and charge/energy transport at molecular interfaces. This project will result in fundamental knowledge to impact the design of future OPVs that could not be gained through study of conventional devices. The PIs will also leverage their extensive track records of communicating the excitement of interdisciplinary research to a broad scientific community and to the general public. The PIs will encourage broadening participation in STEM by leveraging and participating in a multifaceted internship/mentoring program that targets STEM-major students from Springfield Technical Community College to fortify the number of underrepresented students in chemistry and engineering.The use of organic semiconductors with controlled crystallinity at the nanoscale will have a major impact in accelerating the emerging area of organic electronics, as these highly ordered systems will enable researchers to extract intrinsic charge carrier transport phenomena that cannot be accurately determined from disordered systems common to amorphous and/or polycrystalline films used in mainstream devices. In addition, understanding crystallization mechanisms will enable researchers to produce a variety of architectures for solar cell device applications. The goal of the research project is to grow discrete, oriented, crystalline organic P-N junctions, correlate nanomorphologies to optoelectronic properties and establish experimental methods for probing charge and exciton transport phenomena in these semiconductor nanodevices. Single nanowire level measurements will also define the fundamental limits of performance in these 1-D nanostructured systems. The project will enable one to bridge fundamental science with applied research that will be central to the discovery of potentially new device concepts in areas of nanoscale electronics, such as solar cells, vertical transistors, batteries, and sensors.
有机半导体及其在电子器件如太阳能电池中的用途由于低成本制造、机械灵活性和使用通常来源的材料而具有很高的需求。有机光伏电池(OPV)已经展示了10%的功率转换效率。然而,为了继续生产高效的器件,在材料水平上理解和控制器件界面处的分子取向和微观结构将是至关重要的。该计划的成果将在努力了解晶体化学,分子包装和分子界面的电荷/能量传输的研究领域产生广泛的影响。该项目将产生影响未来OPV设计的基础知识,这些知识无法通过研究传统设备获得。PI还将利用其向广泛的科学界和公众传达跨学科研究的兴奋的广泛记录。PI将通过利用和参与针对斯普林菲尔德技术社区学院STEM专业学生的多方面实习/指导计划,鼓励扩大STEM的参与,以加强化学和工程专业学生的代表性不足。在纳米尺度上具有可控结晶度的有机半导体的使用将对加速有机电子的新兴领域产生重大影响,因为这些高度有序的系统将使研究人员能够提取本征电荷载流子传输现象,而这些现象不能从主流器件中使用的非晶和/或多晶膜所共有的无序系统中准确地确定。此外,了解结晶机制将使研究人员能够为太阳能电池器件应用提供各种架构。该研究项目的目标是生长离散的,定向的,结晶有机P-N结,将纳米形态与光电特性相关联,并建立用于探测这些半导体纳米器件中的电荷和激子传输现象的实验方法。单纳米线水平的测量也将定义这些1-D纳米结构系统的性能的基本限制。该项目将使人们能够将基础科学与应用研究联系起来,这将是发现纳米级电子领域潜在新器件概念的核心,如太阳能电池,垂直晶体管,电池和传感器。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Aqueous Eutectic Electrolyte for Low-Cost, Safe Energy Storage with an Operational Temperature Range of 150 °C, from −70 to 80 °C
用于低成本、安全储能的水共晶电解质,工作温度范围为 150°C,从 70 到 80°C
- DOI:10.1021/acs.jpcc.0c09676
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Viola, Wesley;Andrew, Trisha L.
- 通讯作者:Andrew, Trisha L.
Self-discharge characteristics of vapor deposited polymer electrodes in an all-textile supercapacitor
全纺织超级电容器中气相沉积聚合物电极的自放电特性
- DOI:10.1016/j.synthmet.2020.116483
- 发表时间:2020
- 期刊:
- 影响因子:4.4
- 作者:Viola, Wesley;Jin, Chang;Andrew, Trisha L.
- 通讯作者:Andrew, Trisha L.
Aggregation-Induced Delayed Fluorescence through Seed-Induced Crystallization
- DOI:10.1021/acs.jpcc.2c03921
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Kwang-Won Park;Trisha L. Andrew
- 通讯作者:Kwang-Won Park;Trisha L. Andrew
Oxidant aggregate-induced porosity in vapour-deposited polymer films and correlated impact on electrochemical properties
气相沉积聚合物薄膜中氧化剂聚集引起的孔隙率及其对电化学性能的相关影响
- DOI:10.1080/10610278.2019.1623892
- 发表时间:2019
- 期刊:
- 影响因子:3.3
- 作者:Viola, Wesley;Zhang, Lushuai;Andrew, Trisha L.
- 通讯作者:Andrew, Trisha L.
1D nanowires of non-centrosymmetric molecular semiconductors grown by physical vapor deposition
- DOI:10.1039/c9me00100j
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:Kwang-Won Park;David W. Bilger;Trisha L. Andrew
- 通讯作者:Kwang-Won Park;David W. Bilger;Trisha L. Andrew
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Trisha Andrew其他文献
Trisha Andrew的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Trisha Andrew', 18)}}的其他基金
Vapor Phase Organic Chemistry to Deposit Conjugated Polymer Films on Textiles
气相有机化学在纺织品上沉积共轭聚合物薄膜
- 批准号:
1807743 - 财政年份:2018
- 资助金额:
$ 41.42万 - 项目类别:
Standard Grant
相似国自然基金
基于FP-Growth关联分析算法的重症患者抗菌药物精准决策模型的构建和实证研究
- 批准号:2024Y9049
- 批准年份:2024
- 资助金额:100.0 万元
- 项目类别:省市级项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Growth of one-dimensional atomic layer semiconductor and its optoelectronic properties
一维原子层半导体的生长及其光电性能
- 批准号:
21K14497 - 财政年份:2021
- 资助金额:
$ 41.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
In-situ characterization of MOVPE growth dynamics and of diffusion mechanisms in nitrides and their influence on optoelectronic properties of InGaN/AlGaN/GaN quantum structures
MOVPE 生长动力学和氮化物扩散机制的原位表征及其对 InGaN/AlGaN/GaN 量子结构光电性能的影响
- 批准号:
426532685 - 财政年份:2019
- 资助金额:
$ 41.42万 - 项目类别:
Research Grants
EAGER Self-Catalyzed Growth of Patterned GaAsSb and GaAsSbN Nanowires for Optoelectronic Devices
用于光电器件的图案化 GaAsSb 和 GaAsSbN 纳米线的急切自催化生长
- 批准号:
1649517 - 财政年份:2016
- 资助金额:
$ 41.42万 - 项目类别:
Standard Grant
Controllable growth of magnetic semiconductor quantum dots for future spintronic and optoelectronic devices
用于未来自旋电子和光电器件的磁性半导体量子点的可控生长
- 批准号:
DP120100840 - 财政年份:2012
- 资助金额:
$ 41.42万 - 项目类别:
Discovery Projects
Research on development of the growth of III-V nanowires for applications in bottom-up optoelectronic devices
用于自下而上光电器件应用的III-V族纳米线生长研究进展
- 批准号:
23760296 - 财政年份:2011
- 资助金额:
$ 41.42万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development of advanced RF-MBE growth for InN and related alloys and control of their optoelectronic properties
开发先进的 RF-MBE 生长 InN 及相关合金并控制其光电性能
- 批准号:
18206003 - 财政年份:2006
- 资助金额:
$ 41.42万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Controllable growth of semiconductor quantum dots for future nanoelectronic and optoelectronic devices
用于未来纳米电子和光电器件的半导体量子点的可控生长
- 批准号:
DP0663304 - 财政年份:2006
- 资助金额:
$ 41.42万 - 项目类别:
Discovery Projects
Microwave Growth and Characterization of Zinc Oxide Single Crystal Microtubes for Optoelectronic Applications
用于光电应用的氧化锌单晶微管的微波生长和表征
- 批准号:
0505946 - 财政年份:2005
- 资助金额:
$ 41.42万 - 项目类别:
Continuing Grant
The Macquarie National Low Temperature Optoelectronic Thin Film Growth Facility
麦格理国家低温光电薄膜生长设施
- 批准号:
LE0560959 - 财政年份:2005
- 资助金额:
$ 41.42万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Selective Area Growth of Semiconductor Quantum Dots for Optoelectronic Applications
用于光电应用的半导体量子点的选择性区域生长
- 批准号:
DP0452830 - 财政年份:2004
- 资助金额:
$ 41.42万 - 项目类别:
Discovery Projects