Engineering Biomimetic Glucose-Responsive Vesicles for Self-Regulated Insulin Delivery

工程仿生葡萄糖响应囊泡用于自我调节胰岛素输送

基本信息

  • 批准号:
    1708620
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

Non-technical: Diabetes is a disorder in glucose regulation, and is characterized by increase in blood glucose. Globally, an estimated 422 million people had diabetes. In the United States, about 8.3% of the population currently has diabetes and that number is projected to grow to 1 in 3 adults by 2050. The current treatment for high blood sugar is frequent self-administration of insulin injections and monitoring of blood sugar levels throughout the day is necessary to sustain life for patients with type 1 or advanced type 2 diabetes. Lack of tight control of blood sugar levels accounts for many chronic complications of diabetes, such as limb amputation, blindness and kidney failure; while low blood sugar levels result in life disruption and the risk of seizures, unconsciousness, brain damage, or possible death. Current insulin infusion approaches, however, cannot mimic normal physiological conditions in which the pancreatic cells quickly releases insulin in response to increase in blood sugar levels, and insulin levels are shut down once the blood sugar is normal. This proposal is to develop the next-generation blood glucose-responsive insulin delivery systems that are based on synthetic vesicles in a biomimetic manner, inspired by the vesicles (or granules) of pancreatic celIs. The planned insulin delivery system will be able to automatically regulate insulin release continuously and repeatedly according to blood sugar levels. Towards this goal, the PI proposes to develop transformative glucose-responsive insulin nanoparticles (GRINs) for intelligently regulating blood sugar levels with fast and repeatable responsiveness. The activation of GRINs and subsequent release of insulin are expected to be triggered at a high blood sugar level, and the release is inhibited with a normal blood sugar range, thereby mimicking pancreatic cells to "secrete" insulin in response to fluctuating blood sugar levels. The GRINs prepared will be further loaded into a painless microneedle array-based patch on the skin to achieve easy administration and enhanced biocompatibility. This project will develop novel materials, formulations and devices that may be of broad use for development of other bio-responsive smart drug delivery systems. In addition, the proposed research will create dynamic and sustainable education activities, including a K-12 based outreach module 'Engineering Our Way to Stop Diabetes', an interdisciplinary curriculum targeting undergraduates and graduates, together with hands-on lab research. Such activities are expected to inspire students to pursue careers in science, technology, engineering and mathematics (STEM) disciplines.Technical: Diabetes is a major public health problem currently affecting about 422 million people across the world, and this number is expected to reach over 450 million by 2030. Current treatment for Type 1 and advanced Type 2 diabetic patients requires continuous monitoring of blood glucose (BG) levels and periodical insulin injections to maintain normal blood glucose levels. An artificial pancreas-like closed-loop insulin delivery system that continuously and intelligently releases insulin in response to changing blood glucose levels holds great promise for enhancing heath and improving quality of life for patients with type 1 and advanced type 2 diabetes. To date, mimicking the function of pancreatic cells, chemically-controlled closed-loop delivery strategy utilizing synthetic materials and/or modified insulin have been widely explored. This typically consisted of polymeric formulations that swell, shrink or dissociate to adjust the insulin release rate according to ambient glucose levels. However, challenges remain to demonstrate a system which would combine; i) fast response; ii) repeatable activation; iii) ease of administration; and iv) excellent biocompatibility. The proposed project aims to develop the next-generation glucose-responsive insulin delivery systems, inspired by the "natural" granules of pancreatic cells. The PI will explore 'artificial' glucose-responsive insulin nano-granules (GRINs) and their relevant devices. The activation of GRINs and subsequent release of insulin are expected to be rapidly triggered at high blood sugar state, and inhibited within a normal blood sugar levels in a repeatable manner. The GRINs developed will be further integrated into a painless microneedle array-based device for application on skin, and thus achieving easy administration and enhanced biocompatibility. This project will also guide the development of novel materials, formulations and devices for engineering other delivery systems which can be intelligently activated by the variation of physiological signals. Moreover, the proposed research program will be closely integrated with dynamic and sustainable educational activities, through development of a K-12 outreach module- 'Engineering Our Way to Stop Diabetes', a new interdisciplinary curriculum targeting undergraduates and graduates, as well as hands-on lab research. Students will be exposed to biomaterials, devices and micro-nanotechnology, inspiring them to pursue careers in science, technology, engineering and mathematics (STEM) disciplines.
非技术性:糖尿病是一种葡萄糖调节障碍,其特征是血糖升高。全球估计有4.22亿人患有糖尿病。在美国,目前约有8.3%的人口患有糖尿病,预计到2050年,这一数字将增长到三分之一。目前高血糖的治疗方法是频繁自我注射胰岛素,全天监测血糖水平对于维持1型或晚期2型糖尿病患者的生命是必要的。缺乏对血糖水平的严格控制是糖尿病的许多慢性并发症的原因,如截肢、失明和肾衰竭;而低血糖水平则会导致生命中断和癫痫发作、意识丧失、脑损伤或可能死亡的风险。然而,目前的胰岛素输注方法不能模拟正常的生理条件,其中胰腺细胞响应于血糖水平的增加而快速释放胰岛素,并且一旦血糖正常,胰岛素水平就被关闭。本研究的目的是开发下一代血糖响应性胰岛素给药系统,该系统以仿生方式基于合成囊泡,其灵感来自胰腺细胞的囊泡(或颗粒)。计划中的胰岛素输送系统将能够根据血糖水平连续和重复地自动调节胰岛素释放。为了实现这一目标,PI建议开发变革性的葡萄糖响应胰岛素纳米颗粒(GRIN),以快速和可重复的响应智能调节血糖水平。GRIN的激活和随后的胰岛素释放预期在高血糖水平下被触发,并且在正常血糖范围内释放被抑制,从而模仿胰腺细胞响应于波动的血糖水平而“分泌”胰岛素。制备的GRIN将进一步装载到皮肤上的无痛微针阵列贴片中,以实现易于给药和增强的生物相容性。该项目将开发新材料,配方和设备,可广泛用于开发其他生物响应智能药物输送系统。此外,拟议的研究将创建动态和可持续的教育活动,包括基于K-12的外展模块“工程我们的方式来阻止糖尿病”,这是一个针对本科生和研究生的跨学科课程,以及动手实验室研究。预计这些活动将激励学生在科学、技术、工程和数学(STEM)学科中追求职业生涯。技术:糖尿病是一个主要的公共卫生问题,目前影响着全球约4. 22亿人,预计到2030年这一数字将超过4. 5亿。目前1型和晚期2型糖尿病患者的治疗需要连续监测血糖(BG)水平和定期注射胰岛素以维持正常血糖水平。一种人工胰腺样闭环胰岛素输送系统,可持续智能地释放胰岛素以响应血糖水平的变化,这对1型和晚期2型糖尿病患者的健康和生活质量的改善具有很大的希望。迄今为止,模仿胰腺细胞的功能,利用合成材料和/或修饰的胰岛素的化学控制闭环递送策略已被广泛探索。这通常由聚合物制剂组成,所述聚合物制剂溶胀、收缩或解离以根据环境葡萄糖水平调节胰岛素释放速率。然而,仍然存在挑战以证明将以下各项组合的系统:联合收割机; i)快速响应; ii)可重复激活; iii)易于施用;以及iv)优异的生物相容性。该项目旨在开发下一代葡萄糖响应胰岛素输送系统,灵感来自胰腺细胞的“天然”颗粒。PI将探索“人工”葡萄糖响应性胰岛素纳米颗粒(GRIN)及其相关器械。GRIN的激活和随后的胰岛素释放预期在高血糖状态下被快速触发,并以可重复的方式在正常血糖水平内被抑制。所开发的GRIN将进一步集成到无痛微针阵列装置中,用于皮肤应用,从而实现易于给药和增强的生物相容性。该项目还将指导开发新材料,配方和设备,用于工程其他输送系统,这些系统可以通过生理信号的变化智能激活。此外,拟议的研究计划将与动态和可持续的教育活动紧密结合,通过开发K-12外展模块-“工程我们的方式来阻止糖尿病”,一个针对本科生和研究生的新的跨学科课程,以及动手实验室研究。学生将接触到生物材料,设备和微纳米技术,激励他们追求科学,技术,工程和数学(STEM)学科的职业生涯。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhen Gu其他文献

Adoptive Treg therapy with metabolic intervention via perforated microneedles ameliorates psoriasis syndrome.
通过穿孔微针进行代谢干预的过继 Treg 疗法可改善银屑病综合征。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Wentao Zhang;Yingxin Chen;Z. Zhao;Hanqi Zheng;Shenqiang Wang;Ziyan Liao;Tao Sheng;Sheng Zhao;Wenhui Hou;Xinmin Yu;Fang He;Jicheng Yu;Yuqi Zhang;Zhen Gu
  • 通讯作者:
    Zhen Gu
Activating Tumor‐Selective Liquid Metal Nanomedicine through Galvanic Replacement
  • DOI:
    10.1002/adma.202307817
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
  • 作者:
    Junjie Yan;Jinqiang Wang;Xinyu Wang;Donghui Pan;Chen Su;Junxia Wang;Mengzhen Wang;Jianjun Xiong;Yu Chen;Lizhen Wang;Yuping Xu;Chongyang Chen;Min Yang;Zhen Gu
  • 通讯作者:
    Zhen Gu
Materials and Carriers Development for Glucose-Responsive Insulin
葡萄糖反应性胰岛素材料和载体的开发
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    14.6
  • 作者:
    Yuejun Yao;Kangfan Ji;Yanfang Wang;Zhen Gu;Jinqiang Wang
  • 通讯作者:
    Jinqiang Wang
Synthesizing biomaterials in living organisms
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
  • 作者:
    Xiangyang Zhang;Junxia Wang;Ying Zhang;Zhimou Yang;Jie Gao;Zhen Gu
  • 通讯作者:
    Zhen Gu

Zhen Gu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhen Gu', 18)}}的其他基金

Engineering Biomimetic Glucose-Responsive Vesicles for Self-Regulated Insulin Delivery
工程仿生葡萄糖响应囊泡用于自我调节胰岛素输送
  • 批准号:
    1919285
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

RUI: Mechanoregulation of Collective Cell Migration in Biomimetic Microenvironments
RUI:仿生微环境中集体细胞迁移的机械调节
  • 批准号:
    2342274
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Cooperativity Driven Communication through Noncovalent Networks in Biomimetic Systems
仿生系统中通过非共价网络的协作驱动通信
  • 批准号:
    2404149
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323415
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Adaptive Artificial Receptors for Biomimetic Functions
仿生功能的自适应人工受体
  • 批准号:
    MR/X023303/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
SBIR Phase I: CAS: Biomimetic 3D Printed Metal Mold to Mass Produce Dry-Pressed, Modular, Biophilic Concrete Reef Substrate
SBIR 第一阶段:CAS:仿生 3D 打印金属模具,用于批量生产干压、模块化、亲生物混凝土珊瑚礁基底
  • 批准号:
    2334667
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
BIOmimetic selective extraction MEMbranes
仿生选择性提取膜
  • 批准号:
    10112970
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    EU-Funded
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323414
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Synergising nanoemulsion and lipid biomimetic design for advanced delivery
协同纳米乳液和脂质仿生设计以实现先进的递送
  • 批准号:
    LP220200944
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Linkage Projects
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
  • 批准号:
    10586599
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
BEASTS-Novel Biomimetic Liver Platform for Enabling ALD Researchers
BEASTS-为 ALD 研究人员提供支持的新型仿生肝脏平台
  • 批准号:
    10697452
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了