Probing Charge, Spin and Thermoelectric Transport in Atomically Thin Materials

探测原子薄材料中的电荷、自旋和热电输运

基本信息

  • 批准号:
    1708972
  • 负责人:
  • 金额:
    $ 43.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Non-technical abstract: The silicon transistor is the fundamental building block of modern electronics, the continued shrinking of which propelled the exponential growth of computing power over the past several decades. This trend cannot continue as the size of a transistor approaches that of an atom. New electronics beyond silicon calls for new operational principles that are drastically different from that of a conventional transistor, which controls the current flow by controlling the charge of the carriers. Equally important to today's society is the development of energy-harvesting materials and devices that could convert heat to electricity efficiently. Atomically thin layered materials, which consist of layers of atoms strongly bonded within each layer but weakly bonded between layers, offer excellent opportunities to tackle both challenges. The first objective of this project is to understand how a quantum mechanical property of an electron called 'spin' propagates in atomically thin materials and to develop a new type of valve that controls an electric current flow by controlling the spin of the carriers. The second objective of this project is to understand how electric current transports and dissipates in atomically thin materials and how to engineer the surface chemistry of the materials to make them efficient heat-to-electricity converters. Knowledge gained in this research is expected to have significant impact on the development of next-generation nanoelectronics and energy-harvesting devices. The research activities train students of all levels with necessary skills to advance nanoscience and nanotechnology and promote the participation of under-represented groups. Technical abstract: This project seeks to significantly advance the fundamental understandings of charge, spin and thermoelectric transport in atomically thin transition metal dichalcogenides (TMDs) and explore their unique application potentials. One distinguishing property of TMDs that may lead to low-power electronic applications is the interlocking of the spin, valley and layer degrees of freedom in these materials. The first thrust of the project aims to systematically study spin and valley relaxation pathways in few-layer TMDs using magneto-transport measurements. The knowledge acquired is used to design and implement a novel spin-valley-layer valve in bilayer TMDs, leveraging the extensive device fabrication expertise of the PI?' lab. Measurements seek to understand its operation principles and evaluate its performances. The second thrust of the project focuses on understanding and controlling the charge and thermoelectric transport in TMD materials towards thermoelectric applications. One activity of this thrust aims to establish a much-needed quantitative understanding of the electron-phonon interactions in TMD materials by studying the temperature-dependent sheet resistance of the materials in the high-carrier density regime. A second activity exploits their band structures and surface nature to engineer desired thermoelectric responses. Experiments seek to enhance the thermopower of TMD materials using surface covalent functionalization. Measurements are supported by computations. Research carried out in this project is expected to produce timely and critical knowledge to stimulate and underpin the development of potential electronic, spintronic and thermoelectric applications of TMD materials. The research activities equip students with necessary STEM skills while summer camp activities promote science leadership and aim to broaden the reach of science to under-represented groups.
非技术摘要:硅晶体管是现代电子产品的基本组成部分,在过去的几十年里,硅晶体管的不断缩小推动了计算能力的指数增长。当晶体管的尺寸接近原子的尺寸时,这种趋势不能继续下去。硅之外的新电子学需要新的工作原理,这些原理与传统晶体管的工作原理截然不同,传统晶体管通过控制载流子的电荷来控制电流。对当今社会同样重要的是开发可以有效地将热量转化为电能的能量收集材料和设备。原子薄的层状材料,由每层内强键合但层间弱键合的原子层组成,为解决这两个挑战提供了绝佳的机会。该项目的第一个目标是了解称为“自旋”的电子的量子力学性质如何在原子级薄材料中传播,并开发一种新型阀,通过控制载流子的自旋来控制电流。该项目的第二个目标是了解电流如何在原子级薄材料中传输和消散,以及如何设计材料的表面化学,使其成为高效的热电转换器。在这项研究中获得的知识预计将对下一代纳米电子和能量收集设备的发展产生重大影响。研究活动培训各级学生必要的技能,以推进纳米科学和纳米技术,并促进代表性不足的群体的参与。技术摘要:该项目旨在显著推进原子薄过渡金属二硫属化物(TMD)中电荷、自旋和热电输运的基本理解,并探索其独特的应用潜力。可导致低功率电子应用的TMD的一个区别性质是这些材料中的自旋、谷和层自由度的互锁。该项目的第一个目标是利用磁输运测量系统地研究少层TMD中的自旋和谷弛豫路径。所获得的知识是用来设计和实施一种新型的自旋谷层阀双层TMD,利用广泛的设备制造专业知识的PI?实验室测量旨在了解其操作原理并评估其性能。该项目的第二个重点是了解和控制TMD材料中的电荷和热电输运,以实现热电应用。这一推力的一个活动旨在建立一个急需的定量了解TMD材料中的电子-声子相互作用,通过研究温度依赖的薄层电阻的材料在高载流子密度制度。第二个活动利用它们的能带结构和表面性质来设计所需的热电响应。实验试图利用表面共价官能化来提高TMD材料的热电势。测量得到计算的支持。该项目中进行的研究预计将产生及时和关键的知识,以刺激和支持TMD材料潜在的电子、自旋电子和热电应用的开发。研究活动使学生具备必要的STEM技能,而夏令营活动则促进科学领导力,旨在将科学的影响力扩大到代表性不足的群体。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A valley valve and electron beam splitter
  • DOI:
    10.1126/science.aao5989
  • 发表时间:
    2018-12-07
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Li, Jing;Zhang, Rui-Xing;Zhu, Jun
  • 通讯作者:
    Zhu, Jun
Spin relaxation in fluorinated single and bilayer graphene
  • DOI:
    10.1103/physrevb.100.035421
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Susanne Wellnhofer;A. Stabile;D. Kochan;M. Gmitra;Ya-Wen Chuang;Jun Zhu;J. Fabian
  • 通讯作者:
    Susanne Wellnhofer;A. Stabile;D. Kochan;M. Gmitra;Ya-Wen Chuang;Jun Zhu;J. Fabian
Ferromagnetism in van der Waals compound MnSb1.8Bi0.2Te4
  • DOI:
    10.1103/physrevmaterials.4.064411
  • 发表时间:
    2020-06-11
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Chen, Yangyang;Chuang, Ya-Wen;Ratcliff, William, II
  • 通讯作者:
    Ratcliff, William, II
Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy
  • DOI:
    10.1038/s41563-020-0631-x
  • 发表时间:
    2020-03-10
  • 期刊:
  • 影响因子:
    41.2
  • 作者:
    Briggs, Natalie;Bersch, Brian;Robinson, Joshua A.
  • 通讯作者:
    Robinson, Joshua A.
Metallic Phase and Temperature Dependence of the ν=0 Quantum Hall State in Bilayer Graphene
双层石墨烯中 δ=0 量子霍尔态的金属相和温度依赖性
  • DOI:
    10.1103/physrevlett.122.097701
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Li, Jing;Fu, Hailong;Yin, Zhenxi;Watanabe, Kenji;Taniguchi, Takashi;Zhu, Jun
  • 通讯作者:
    Zhu, Jun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jun Zhu其他文献

A New Scoring System for Predicting Short-term Outcomes in Critically-ill Acute Decompensated Heart Failure
预测危重急性失代偿性心力衰竭短期结果的新评分系统
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Mo;Li;H. Tan;Yang Wang;Yan;Yan Liang;Jun Zhu
  • 通讯作者:
    Jun Zhu
Initial morphological responses of coastal beaches to a mega offshore artificial island
沿海海滩对大型近海人工岛的初始形态响应
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Gen Liu;Hongshuai Qi;F. Cai;Jun Zhu;Shaohua Zhao;Jianhui Liu;G. Lei;C. Cao;Yanyu He;Z. Xiao
  • 通讯作者:
    Z. Xiao
span /spanspanspan style=font-size:12pt;Pd-Catalyzed Highly Regio-, Diastereo-, and Enantioselective Allylic Alkylation of α/spanspan style=font-size:12pt;-Fluorophosphonates/span
Pd 催化α-氟膦酸盐的高度区域选择性、非对映选择性和对映选择性烯丙基烷基化
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Ying Huang;Qing Song Zhang;Ping Fang;Tie Gen Chen;Jun Zhu;Xue Long Hou
  • 通讯作者:
    Xue Long Hou
Securing Massive MIMO Via Power Scaling
通过功率缩放确保大规模 MIMO
  • DOI:
    10.1109/lcomm.2016.2532328
  • 发表时间:
    2016-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jun Zhu;Wei Xu
  • 通讯作者:
    Wei Xu
A simplex method for the orbit determination of maneuvering satellites
机动卫星定轨的单纯形法

Jun Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jun Zhu', 18)}}的其他基金

NSF/DMR-BSF: Quantum Transport in a Helical One-Dimensional System
NSF/DMR-BSF:螺旋一维系统中的量子传输
  • 批准号:
    1904986
  • 财政年份:
    2019
  • 资助金额:
    $ 43.22万
  • 项目类别:
    Standard Grant
Convergent Research: NSF/DOE Quantum Science Summer School
融合研究:NSF/DOE 量子科学暑期学校
  • 批准号:
    1743079
  • 财政年份:
    2017
  • 资助金额:
    $ 43.22万
  • 项目类别:
    Standard Grant
Controlling Valley and Spin-Orbit Coupling in Graphene and Bilayer Graphene Nanostructures
控制石墨烯和双层石墨烯纳米结构中的谷和自旋轨道耦合
  • 批准号:
    1506212
  • 财政年份:
    2015
  • 资助金额:
    $ 43.22万
  • 项目类别:
    Standard Grant
CAREER: Mesoscopic Phenomena and Band-Structure Engineering in Single-Layer and Bilayer Graphene
职业:单层和双层石墨烯的介观现象和能带结构工程
  • 批准号:
    0748604
  • 财政年份:
    2008
  • 资助金额:
    $ 43.22万
  • 项目类别:
    Continuing Grant

相似国自然基金

CHARGE综合征致病基因CHD7介导的三维转录调控网络研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
Sema3E在CHARGE综合症中的作用及机制研究
  • 批准号:
    81160144
  • 批准年份:
    2011
  • 资助金额:
    52.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Charge-Spin Conversions and Nonreciprocal Transport in Chiral Materials
手性材料中的电荷自旋转换和不可逆输运
  • 批准号:
    2325147
  • 财政年份:
    2024
  • 资助金额:
    $ 43.22万
  • 项目类别:
    Standard Grant
CAREER: Interplay of sliding ferroelectricity, spin and charge orderings in layered quantum materials
职业:层状量子材料中滑动铁电性、自旋和电荷排序的相互作用
  • 批准号:
    2237761
  • 财政年份:
    2023
  • 资助金额:
    $ 43.22万
  • 项目类别:
    Continuing Grant
A Component-wise Model for Understanding Spin-Charge Interactions in Nanoparticle Solids Using Targeted Synthesis, Magnetometry, and Magnetoresistance
利用靶向合成、磁力测定和磁阻来理解纳米颗粒固体中自旋电荷相互作用的组件模型
  • 批准号:
    2322706
  • 财政年份:
    2023
  • 资助金额:
    $ 43.22万
  • 项目类别:
    Continuing Grant
Investigation of spin-charge interconversion phenomena and realization of semiconductor-based spin logic devices
自旋电荷相互转换现象的研究和基于半导体的自旋逻辑器件的实现
  • 批准号:
    23KF0150
  • 财政年份:
    2023
  • 资助金额:
    $ 43.22万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Postdoctoral Fellowship: MPS-Ascend: Controlling the spin and charge of color centers in diamond under cryogenic conditions
博士后奖学金:MPS-Ascend:在低温条件下控制钻石色心的自旋和电荷
  • 批准号:
    2316693
  • 财政年份:
    2023
  • 资助金额:
    $ 43.22万
  • 项目类别:
    Fellowship Award
Evaluation and application of charge to spin conversion in topological crystalline insulators
拓扑晶体绝缘体中电荷自旋转换的评价及应用
  • 批准号:
    22KJ1719
  • 财政年份:
    2023
  • 资助金额:
    $ 43.22万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
MuSR and multi-probe studies of spin-charge interplays in emergent quantum phenomena
涌现量子现象中自旋电荷相互作用的 MuSR 和多探针研究
  • 批准号:
    2104661
  • 财政年份:
    2023
  • 资助金额:
    $ 43.22万
  • 项目类别:
    Standard Grant
Competing charge, spin, and molecular lattice interactions lead to quantum glass phases in strongly correlated pi-electron systems
竞争性电荷、自旋和分子晶格相互作用导致强相关π电子系统中的量子玻璃相
  • 批准号:
    23H01114
  • 财政年份:
    2023
  • 资助金额:
    $ 43.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Theoretical study on doping-induced electronic states originating from spin-charge separation of strongly correlated insulators
强相关绝缘体自旋电荷分离引起的掺杂诱导电子态的理论研究
  • 批准号:
    22K03477
  • 财政年份:
    2022
  • 资助金额:
    $ 43.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Microscopic treatment of charge and spin response to electromagnetic fields
电磁场电荷和自旋响应的微观处理
  • 批准号:
    568887-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 43.22万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了