Solutions of Nonlinear Hyperbolic and Mixed Type Partial Differential Equations
非线性双曲混合型偏微分方程的解
基本信息
- 批准号:1714912
- 负责人:
- 金额:$ 14.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
When an airplane's flight speed is close to the speed of sound (the so-called transonic regime), the airflow around the plane has very unusual properties: in some areas the flow is supersonic, and in other areas the flow is subsonic; these two are separated by a surface where the flow is exactly sonic (i.e., has the speed of sound). The sonic surface is attached to the airfoil, and characteristics of the flow, such as drag and lift, change dramatically along the airfoil when the sonic surface is crossed. This causes a serious strain experienced by the airfoil. Mathematical description of this phenomenon is given by partial differential equations (PDE) of mixed type that are the main subject of this project. Other applications of similar equations are found in fluid and quantum mechanics, general relativity, bio-sciences, and plasma physics. Although these equations are widely used and serve as a foundation of some engineering tasks, for example, of the computer-aided design in aerodynamics, among others, and despite recent extensive studies of mixed type PDE, many fundamental mathematical questions concerning the behavior of their solutions are still unresolved. In this project, the Principal Investigator will study simpler, frequently used systems and classes of initial data that play a paramount role in understanding the wave interaction, asymptotic behavior of solutions and their stability. This project will also serve as a training ground for graduate and undergraduate students who will contribute to this research. Several model systems of PDE will be studied whose solutions involve the so-called singular shocks, where at least one state variable develops an extreme concentration in the form of a weighted Dirac delta function. These can be used as building blocks for gaining a broader knowledge, insight and perspective on global in time existence of large solutions to systems of conservation laws in one spatial dimension. Differential equations in several spatial dimensions will also be considered. Simpler cases of solutions with spherical symmetry are among the principal topics of this project. Diverse tools from dynamical systems, geometry, harmonic and Fourier analysis will be used in this project. The ultimate goal of this research is to find building blocks that provide information on models of compressible fluid flow and can be used in a well-defined construction scheme to approximate solutions for any initial data.
当飞机的飞行速度接近音速时(所谓的跨音速区域),飞机周围的气流具有非常不寻常的特性:在某些区域,气流是超音速的,而在其他区域,气流是亚音速的;这两者被一个表面分开,在这个表面上,气流完全是音速的(即,具有声音的速度)。音速面附着在翼型上,当音速面穿过翼型时,气流的特性,如阻力和升力,沿翼型沿着发生显著变化。这导致翼型件经受严重的应变。这一现象的数学描述是由混合型偏微分方程(PDE),这是本项目的主要课题。类似方程的其他应用在流体和量子力学、广义相对论、生物科学和等离子体物理学中。尽管这些方程被广泛使用并作为一些工程任务的基础,例如空气动力学中的计算机辅助设计等,并且尽管最近对混合型偏微分方程进行了广泛的研究,但许多有关其行为的基本数学问题解仍然没有得到解决。在这个项目中,主要研究者将研究更简单,经常使用的系统和初始数据类,在理解波的相互作用,解的渐近行为及其稳定性方面发挥着至关重要的作用。该项目也将作为研究生和本科生谁将有助于这项研究的培训基地。几个模型系统的偏微分方程将研究其解决方案涉及所谓的奇异冲击,其中至少有一个状态变量开发一个极端浓度的形式加权狄拉克δ函数。这些可以被用来作为积木获得更广泛的知识,洞察力和全球的时间存在的大型解决方案,在一个空间维度的守恒定律系统的观点。在几个空间维度的微分方程也将被考虑。球对称解的简单情况是这个项目的主要课题之一。在这个项目中将使用动力系统,几何,谐波和傅立叶分析的各种工具。本研究的最终目标是找到构建块,提供可压缩流体流动模型的信息,并可用于一个定义明确的建设计划,以近似任何初始数据的解决方案。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Amplitude Blowup in Radial Isentropic Euler Flow
- DOI:10.1137/20m1340241
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:H. Jenssen;Charis Tsikkou
- 通讯作者:H. Jenssen;Charis Tsikkou
Multi-d isothermal Euler flow: Existence of unbounded radial similarity solutions
- DOI:10.1016/j.physd.2020.132511
- 发表时间:2020-09-01
- 期刊:
- 影响因子:4
- 作者:Jenssen, Helge Kristian;Tsikkou, Charis
- 通讯作者:Tsikkou, Charis
On similarity flows for the compressible Euler system
可压缩欧拉系统的相似流
- DOI:10.1063/1.5049093
- 发表时间:2018
- 期刊:
- 影响因子:1.3
- 作者:Jenssen, Helge Kristian;Tsikkou, Charis
- 通讯作者:Tsikkou, Charis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charis Tsikkou其他文献
SHARPER TOTAL VARIATION BOUNDS FOR THE P-SYSTEM OF FLUID DYNAMICS
流体动力学 P 系统更清晰的总变化范围
- DOI:
10.1142/s0219891611002391 - 发表时间:
2011 - 期刊:
- 影响因子:0.7
- 作者:
Charis Tsikkou - 通讯作者:
Charis Tsikkou
Singular shocks in a chromatography model
- DOI:
10.1016/j.jmaa.2016.03.001 - 发表时间:
2015-11 - 期刊:
- 影响因子:1.3
- 作者:
Charis Tsikkou - 通讯作者:
Charis Tsikkou
Charis Tsikkou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charis Tsikkou', 18)}}的其他基金
REU Site: Undergraduate Research in Applied Analysis at West Virginia University
REU 网站:西弗吉尼亚大学应用分析本科生研究
- 批准号:
2349040 - 财政年份:2024
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
相似海外基金
Large time behavior of solutions to nonlinear hyperbolic and dispersive equations with weakly dissipative structure
弱耗散结构非线性双曲和色散方程解的大时间行为
- 批准号:
22KJ2801 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Stability, Uniqueness, and Existence for Solutions of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程解的稳定性、唯一性和存在性
- 批准号:
2306258 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Geometric Methods for Singular Solutions to Nonlinear Hyperbolic Partial Differential Equations
非线性双曲偏微分方程奇异解的几何方法
- 批准号:
2054184 - 财政年份:2021
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Regularity for solutions to quasilinear degenerate parabolic-hyperbolic stochastic partial differential equations (SPDEs) driven by nonlinear multipli
由非线性乘法驱动的拟线性简并抛物双曲随机偏微分方程 (SPDE) 解的正则性
- 批准号:
1939627 - 财政年份:2017
- 资助金额:
$ 14.1万 - 项目类别:
Studentship
Reserch on the propagation of singularities of the solutions for nonlinear hyperbolic partial differential equations
非线性双曲偏微分方程解的奇点传播研究
- 批准号:
15K17576 - 财政年份:2015
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Structure of solutions to the systems of nonlinear hyperbolic partial differential equations arising in fluid dynamics and conservation laws for phase transition dynamics
流体动力学中出现的非线性双曲偏微分方程组的解的结构和相变动力学守恒定律
- 批准号:
23540250 - 财政年份:2011
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Entropy solutions for nonlinear degenerate parabolic equations and hyperbolic systems of conservation laws
非线性简并抛物线方程和守恒定律双曲系统的熵解
- 批准号:
22540235 - 财政年份:2010
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on the sufficient conditions for the global existence of solutions to the exterior problems for nonlinear hyperbolic equations
非线性双曲方程外问题解全局存在的充分条件研究
- 批准号:
20540211 - 财政年份:2008
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structures and singular perturbations limits of solutions to the systems of non-strictly hyperbolic nonlinear partial differential equations for the conservation laws in the phase transition dynamics
相变动力学守恒定律非严格双曲非线性偏微分方程组解的结构和奇异摄动极限
- 批准号:
18540202 - 财政年份:2006
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
International Research Fellow Awards: Large Time Behavior of Solutions to Nonlinear Hyperbolic-Parabolic Systems of Conservation Laws with Non-Strict Hyperbolicity
国际研究员奖:非严格双曲性守恒定律非线性双曲-抛物线系统解的大时间行为
- 批准号:
9704618 - 财政年份:1997
- 资助金额:
$ 14.1万 - 项目类别:
Fellowship Award