RI: Small: Collaborative Research: Seeing Surfaces: Actionable Surface Properties from Vision

RI:小型:协作研究:看到表面:从视觉中可操作的表面特性

基本信息

  • 批准号:
    1715251
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

This project is to enable computers and robots the capability of estimating actionable, physical properties of surfaces (the feel) from their appearance (the looks). The key idea is to leverage the deeply interwoven relation between radiometric and physical surface characteristics. By learning models that make explicit the physical surface properties encoded in full and partial measurements of radiometric appearance properties, computers can estimate crucial physical properties of real-world surfaces from passive observations with novel camera systems. This project paves the path for integrating these models and estimation algorithms into scene understanding, robotic action planning, and efficient visual sensing. The research results provide a currently missing but fundamental capability to computer vision that benefits a number of applications in areas of computer vision, robotics, and computer graphics. The project provides hands-on research opportunities for both undergraduate and graduate students and are integrated in the PIs' undergraduate and graduate courses taught at Drexel and Rutgers. They are also used as a backdrop for K-12 outreach activities including high school and middle school mentorship programs. The data collection activities provide an ideal platform to expose K-12 students to physics and computer science.This research investigates the methods to infer actionable surface properties from images and detailed surface reflectance measurements. The research activities are centered on four specific aims: 1) controlled and uncontrolled large-scale data collection of actionable physical properties and appearance measurements of everyday surfaces, 2) derivation of prediction models for deducing physical properties from local surface appearance, 3) integration of global semantic context including object and scene information, and 4) development of efficient appearance capture and its use for novel physics-from-appearance sensing. These research thrusts collectively answer the fundamental question of how computer vision can anticipate the physical properties of a surface without touching it and knowing what it is, laying the foundation for computational vision-for-action.
该项目旨在使计算机和机器人能够根据其外观(外观)来估计表面(感觉)的可操作的物理属性。其关键思想是利用辐射测量和物理表面特征之间的深度相互交织的关系。通过学习模型,明确在辐射外观属性的全部和部分测量中编码的物理表面属性,计算机可以使用新型相机系统从被动观测中估计现实世界表面的关键物理属性。该项目为将这些模型和估计算法集成到场景理解、机器人行动规划和高效视觉传感中铺平了道路。研究结果为计算机视觉提供了一种目前缺失但基本的能力,使计算机视觉、机器人和计算机图形学领域的许多应用受益。该项目为本科生和研究生提供了实践研究的机会,并被整合到德雷克塞尔和罗格斯大学教授的PI的本科生和研究生课程中。它们也被用作K-12外展活动的背景,包括高中和初中导师计划。数据收集活动为K-12学生接触物理和计算机科学提供了一个理想的平台。本研究探索了从图像和详细的表面反射率测量推断可操作的表面属性的方法。研究活动集中于四个具体目标:1)可操作的和非控制的大规模数据收集日常表面的可操作的物理属性和外观测量,2)推导用于从局部表面外观推断物理属性的预测模型,3)集成包括对象和场景信息的全局语义上下文,以及4)开发有效的外观捕获并将其用于从外观感知新的物理。这些研究成果共同回答了一个基本问题,即计算机视觉如何在不接触表面和知道表面是什么的情况下预测表面的物理属性,为计算机视觉-行动奠定了基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ko Nishino其他文献

Gaze Estimation from Head Tracking
通过头部跟踪进行注视估计
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ikuhisa Mitsugami;Yamato Okinaka;Ko Nishino;Yasushi Yagi
  • 通讯作者:
    Yasushi Yagi
Appearance modeling for mixed reality: photometric aspects
混合现实的外观建模:光度方面
DeepShaRM: Multi-View Shape and Reflectance Map Recovery Under Unknown Lighting
DeepShaRM:未知光照下的多视图形状和反射率图恢复
Adaptively Merging Large-Scaale Range Data with Reflectance Properties
自适应地将大范围数据与反射率属性合并
Distortion Correction of Range Data Obtained from Floating Laser Range Sensor using Parameterized Deformation Registration.
使用参数化变形配准对从浮动激光测距传感器获得的测距数据进行畸变校正。

Ko Nishino的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ko Nishino', 18)}}的其他基金

RI: Small: Collaborative Research: MatCam: A Camera that Sees Materials
RI:小型:协作研究:MatCam:看到材料的相机
  • 批准号:
    1421094
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EAGER: A Local-Global Approach Towards Omnipresent Vision
EAGER:实现无所不在的愿景的本地-全球方法
  • 批准号:
    1353235
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research: Recognition of Materials
RI:媒介:协作研究:材料识别
  • 批准号:
    0964420
  • 财政年份:
    2010
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CAREER: Scale Variability of 3D Geometry for Computer Vision
职业:计算机视觉 3D 几何的尺度变化
  • 批准号:
    0746717
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
  • 批准号:
    2345528
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232055
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232054
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232300
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232299
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2334936
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313130
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Evolutionary Approach to Optimal Morphology and Control of Transformable Soft Robots
RI:小型:协作研究:可变形软机器人的最佳形态和控制的进化方法
  • 批准号:
    2325491
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了