Construction, Analysis, Implementation and Application of New Time Integrators for Large Scale Complex Systems

大规模复杂系统新型时间积分器的构建、分析、实现和应用

基本信息

  • 批准号:
    1720495
  • 负责人:
  • 金额:
    $ 15.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Computer simulations are an essential tool of science and engineering. Relying on computational models to design a car or predict movement of a hurricane is commonplace practice that allows scientists and engineers to significantly reduce time and resources required to accomplish these tasks. The complexity of phenomena we are interested in simulating is constantly increasing. Demand for predictive computer models of complex systems dynamics, such as folding of a protein molecule or movement of a tsunami, is ever-growing and cannot be met with advances in computational hardware alone. Advanced mathematical methods and computational techniques are an integral component of improving fidelity and efficiency of predictive computational models. In particular, numerical methods, which enable simulation of the time evolution of a complex system, are needed to create computer models that can accurately and efficiently predict the behavior of the system over long periods of time. The proposed research focuses on construction of advanced numerical techniques that enable simulating dynamics of complex systems that evolve over a wide spectrum of temporal scales. The project will include both development of theory of such methods as well as their implementation and application to specific problems such as numerical weather prediction and climate modeling. This work will make available software package that can be utilized in a wide variety of scientific and engineering fields ranging from biochemistry and geo-engineering to fluid dynamics and plasma physics. The proposed project will advance the state-of-the-art in time integration from theoretical and practical perspectives. It has become increasingly clear that fast high-order discretization methods to resolve spatial and temporal scales of complex phenomena are essential to ensure that computational models are sufficiently efficient and trustworthy. While extensive research efforts have been dedicated to the development of high-order spatial discretization approaches such as finite-element or spectral methods, research on construction and application of advanced time integrators to large-scale complex problems lags behind. The proposed research will focus on development of new time integration algorithms that significantly improve the efficiency of currently available methods. The project aims to construct, analyze and implement time integration schemes that can simultaneously take advantage of explicit, implicit and exponential integration approaches. Important theoretical questions such as accuracy and convergence of these techniques will be addressed. General integrators as well as classes of methods that can exploit particular problem structure will be derived. In addition, custom-designed time integrators will be created for weather and climate prediction problems to maximize the efficiency of computational models routinely used in these fields. The most efficient time integration schemes developed as a result of this project will be implemented as part of a publicly available software package designed for serial and parallel computational platforms. Outcomes of this research will also be integrated into the core graduate curriculum of the applied mathematics program at UC Merced.
计算机模拟是科学和工程的重要工具。 依靠计算模型来设计汽车或预测飓风的移动是常见的做法,使科学家和工程师能够显着减少完成这些任务所需的时间和资源。 我们感兴趣的模拟现象的复杂性不断增加。 对复杂系统动力学的预测计算机模型的需求,例如蛋白质分子的折叠或海啸的运动,不断增长,并且不能仅通过计算硬件的进步来满足。 先进的数学方法和计算技术是提高预测计算模型的保真度和效率的一个组成部分。特别是,需要能够模拟复杂系统的时间演化的数值方法来创建可以准确有效地预测系统在长时间内的行为的计算机模型。 拟议的研究重点是建设先进的数值技术,使模拟复杂系统的动态演变在广泛的时间尺度。 该项目将包括这些方法的理论发展以及它们在数值天气预报和气候建模等具体问题上的实施和应用。 这项工作将提供可用于从生物化学和地球工程到流体动力学和等离子体物理学等各种科学和工程领域的软件包。 该项目将从理论和实践的角度推进时间整合的最新技术。越来越明显的是,解决复杂现象的空间和时间尺度的快速高阶离散化方法对于确保计算模型足够有效和值得信赖至关重要。虽然大量的研究工作一直致力于发展高阶空间离散方法,如有限元或谱方法,先进的时间积分器的建设和应用的研究滞后于大规模复杂问题。拟议的研究将集中在开发新的时间积分算法,显着提高目前可用的方法的效率。该项目旨在构建,分析和实施时间积分方案,可以同时利用显式,隐式和指数积分方法。重要的理论问题,如这些技术的准确性和收敛性将得到解决。一般的积分器以及类的方法,可以利用特定的问题结构将被导出。此外,将为天气和气候预测问题创建定制设计的时间积分器,以最大限度地提高这些领域常规使用的计算模型的效率。 最有效的时间积分计划,作为本项目的结果开发将实施的一部分,公开提供的软件包设计的串行和并行计算平台。 这项研究的成果也将被整合到应用数学课程的核心研究生课程在加州大学默塞德。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
EPIRK-W and EPIRK-K Time Discretization Methods
EPIRK-W 和 EPIRK-K 时间离散化方法
  • DOI:
    10.1007/s10915-018-0761-3
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Narayanamurthi, Mahesh;Tranquilli, Paul;Sandu, Adrian;Tokman, Mayya
  • 通讯作者:
    Tokman, Mayya
High-order numerical solutions to the shallow-water equations on the rotated cubed-sphere grid
  • DOI:
    10.1016/j.jcp.2021.110792
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Gaudreault;M. Charron;V. Dallerit;M. Tokman
  • 通讯作者:
    S. Gaudreault;M. Charron;V. Dallerit;M. Tokman
Constructing New Time Integrators Using Interpolating Polynomials
使用插值多项式构造新的时间积分器
KIOPS: A fast adaptive Krylov subspace solver for exponential integrators
  • DOI:
    10.1016/j.jcp.2018.06.026
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Gaudreault;Greg Rainwater;M. Tokman
  • 通讯作者:
    S. Gaudreault;Greg Rainwater;M. Tokman
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mayya Tokman其他文献

Stiffness resilient exponential integrators and $$\varphi $$ -order conditions
  • DOI:
    10.1007/s10543-025-01062-z
  • 发表时间:
    2025-05-06
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Valentin Dallerit;Mayya Tokman
  • 通讯作者:
    Mayya Tokman
ANODE 2023 In honour of John Butcher’s 90th birthday
  • DOI:
    10.1007/s11075-024-01849-1
  • 发表时间:
    2024-05-31
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Kevin Burrage;Zdzisław Jackiewicz;Bernd Krauskopf;Yuto Miyatake;Helmut Podhaisky;Mayya Tokman
  • 通讯作者:
    Mayya Tokman
Electric Field Effects on Water and Water-Vacuum Interfaces in Molecular Dynamics Simulations
  • DOI:
    10.1016/j.bpj.2009.12.2081
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jane HyoJin Lee;Zachary A. Levine;P. Thomas Vernier;Mayya Tokman;Michael E. Colvin
  • 通讯作者:
    Michael E. Colvin
Using Simple Water:VACUUM Energetics to Model Phospholipid Bilayer Electropermeabilization
  • DOI:
    10.1016/j.bpj.2010.12.1019
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Jane HyoJin Lee;Zachary A. Levine;Mayya Tokman;P. Thomas Vernier;Michael E. Colvin
  • 通讯作者:
    Michael E. Colvin
Exploring exponential time integration for strongly magnetized charged particle motion
  • DOI:
    10.1016/j.cpc.2024.109294
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tri P. Nguyen;Ilon Joseph;Mayya Tokman
  • 通讯作者:
    Mayya Tokman

Mayya Tokman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mayya Tokman', 18)}}的其他基金

Construction of New Parallel Time Integrators
新型并行时间积分器的构建
  • 批准号:
    2012875
  • 财政年份:
    2020
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Continuing Grant
Collaborative Research: Construction, Analysis, Implementation and Application of New Efficient Exponential Integrators
合作研究:新型高效指数积分器的构建、分析、实现和应用
  • 批准号:
    1419105
  • 财政年份:
    2014
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Continuing Grant
New Exponential Integrators and Applications
新的指数积分器和应用
  • 批准号:
    1115978
  • 财政年份:
    2011
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Motion analysis of Japanese hospitality gestures and implementation in artifacts
日本待客手势的运动分析及其在文物中的实现
  • 批准号:
    23K11722
  • 财政年份:
    2023
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Outcomes After Emergency Department Visits for Dyspnea: Population-Based Interrupted Time-Series Analysis of Implementation of B-Type Natriuretic Peptide Assays
因呼吸困难而急诊就诊后的结果:实施 B 型利尿钠肽测定的基于人群的间断时间序列分析
  • 批准号:
    493119
  • 财政年份:
    2023
  • 资助金额:
    $ 15.03万
  • 项目类别:
Strengthening implementation science in Acute Respiratory Failure using multilevel analysis of existing data
利用现有数据的多级分析加强急性呼吸衰竭的实施科学
  • 批准号:
    10731311
  • 财政年份:
    2023
  • 资助金额:
    $ 15.03万
  • 项目类别:
Implementation of an agent-based urban freight model and simulation analysis
基于Agent的城市货运模型的实现及仿真分析
  • 批准号:
    23K13421
  • 财政年份:
    2023
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mental health preventive support for adolescent non-help-seekers: An empirical analysis for social implementation
对青少年非求助者的心理健康预防支持:社会实施的实证分析
  • 批准号:
    22KJ0712
  • 财政年份:
    2023
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Implementation of Eplet Mismatch Analysis in Pediatric Kidney Transplantation
Eplet 错配分析在小儿肾移植中的实施
  • 批准号:
    10739126
  • 财政年份:
    2023
  • 资助金额:
    $ 15.03万
  • 项目类别:
Delivery of PrEP to Key Populations in Kenya: Applying Coincidence Analysis to Determine Effective Implementation Strategies
向肯尼亚重点人群提供 PrEP:应用巧合分析来确定有效的实施策略
  • 批准号:
    10700586
  • 财政年份:
    2023
  • 资助金额:
    $ 15.03万
  • 项目类别:
CyberTraining: Implementation: Small: Promoting AI Readiness for Machine-Assisted Secure Data Analysis (PAIR4MASDA)
网络培训:实施:小型:促进人工智能为机器辅助安全数据分析做好准备 (PAIR4MASDA)
  • 批准号:
    2320951
  • 财政年份:
    2023
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Standard Grant
Translating AI-based methods to quantify pathology in MS: Development, validation and implementation of a sustainable MRI analysis framework within a pan-Canadian network
转化基于人工智能的方法来量化多发性硬化症的病理学:在泛加拿大网络内开发、验证和实施可持续的 MRI 分析框架
  • 批准号:
    480232
  • 财政年份:
    2023
  • 资助金额:
    $ 15.03万
  • 项目类别:
    Operating Grants
A Multidisciplinary, Mixed Methods Analysis of the Implementation and Efficacy of School-Based Health Centers and Mechanisms through which SBHCs Improve Child Mental Health and Education Outcomes
对校本健康中心和 SBHC 改善儿童心理健康和教育成果的机制的实施和效果进行多学科、混合方法分析
  • 批准号:
    10636247
  • 财政年份:
    2023
  • 资助金额:
    $ 15.03万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了