Big cones of algebraic varieties
代数簇的大锥体
基本信息
- 批准号:229842420
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2012
- 资助国家:德国
- 起止时间:2011-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ample line bundles are fundamental objects in modern Algebraic Geometry, which enjoy many geometric, numerical and cohomological properties. By contrast, due to well-known pathologies, line bundles satisfying the more general property of bigness were for a long time considered difficult to treat and geometrically hard to grasp. Very recently, however, there were substantial break-throughs showing that from an asymptotic point of view, big line bundles display quite predictable behaviour analogous to that of ample line bundles -- in this way their geometric use is now much more obvious and they therefore received a great deal of attention. Due to these developments it has become essential to understand the set of big line bundles (the big cone) of an algebraic variety as closely as possible from a structural point of view. In particular, decompositions of the big cone into geometrically and numerically determined subcones are of central importance - they collect line bundles with equivalent geometric behaviour and thus reduce the complexity of the situation drastically. In our group, the following sub-projects in this current area of Algebraic Geometry are to be studied: (A) Big cones of algebraic surfaces, investigation of the chamber numbers and chamber volumes of (in particular) anti-canonical surfaces, geometrical interpretations of the chamber volume and computation of the chamber numbers by algorithmic and combinatorial methods. (B) Big cones of higher dimensional varieties, study of the polyhedral case by methods of the Minimal Model Program, characterization of the sub cones, first treatment of sub cone number and sub cone volume in the non-polyhedral case.
充足线丛是现代代数几何中的基本对象,具有许多几何、数值和上同调性质。相比之下,由于众所周知的病理,满足更一般的大属性的线束在很长一段时间内被认为是难以处理和几何难以把握。然而,最近,有大量的break-dampers显示,从渐近的角度来看,大线束显示相当可预测的行为类似于丰富的线束-以这种方式,他们的几何用途现在是更加明显,因此他们收到了很大的关注。由于这些发展,从结构的角度尽可能地理解代数簇的大线丛(大锥)的集合变得至关重要。特别是,分解的大锥成几何和数值确定的子锥是至关重要的-他们收集线束与等效的几何行为,从而大大降低了复杂的情况。在我们的小组中,以下子项目在当前的代数几何领域进行研究:(A)代数曲面的大圆锥,调查室数和室体积(特别是)反正则曲面,几何解释室体积和计算室数的算法和组合方法。(B)大锥的高维品种,研究的多面体情况下的最小模型程序的方法,表征的子锥,第一次治疗的子锥数量和子锥体积在非多面体的情况下。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Minkowski decomposition of Okounkov bodies on surfaces
曲面上奥孔科夫体的闵可夫斯基分解
- DOI:10.1016/j.jalgebra.2014.05.024
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Luszcz-Swidecka;Schmitz
- 通讯作者:Schmitz
On the polyhedrality of global Okounkov bodies
论全局奥孔科夫体的多面体
- DOI:10.1515/advgeom-2015-0042
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Schmitz;Seppänen
- 通讯作者:Seppänen
On the boundedness of the denominators in the Zariski decomposition on surfaces
曲面上 Zariski 分解中分母的有界性
- DOI:10.1515/crelle-2015-0058
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Pokora;P. Schmitz
- 通讯作者:P. Schmitz
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Thomas Bauer其他文献
Professor Dr. Thomas Bauer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Thomas Bauer', 18)}}的其他基金
Der Diwan des Ibrahim al-Mi'mar (gest. 1348): Kritische Edition
易卜拉欣·米马尔(Ibrahim al-Mimar,卒于 1348 年)的合集:评论版
- 批准号:
38170865 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Positivität von Divisoren auf algebraischen Mannigfaltigkeiten
代数流形上因数的正性
- 批准号:
5247078 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Priority Programmes
Seshadri-Konstanten abelscher Varietäten
阿贝尔簇的 Seshadri 常数
- 批准号:
5204708 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Grants
Edition of the complete works of Ibn Nubatah al-Misri (1287-1366)
伊本·努巴塔·米斯里 (Ibn Nubatah al-Misri) 全集版 (1287-1366)
- 批准号:
423723105 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Role of Microglial Fractalkine Signaling in Altered Dopaminergic Wiring in FASD
小胶质细胞分形蛋白信号传导在 FASD 多巴胺能线路改变中的作用
- 批准号:
10666254 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
- 批准号:
10815443 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Identifying novel regenerative treatments for CNS injury in adult mammals
确定成年哺乳动物中枢神经系统损伤的新型再生疗法
- 批准号:
10735524 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fascin1 in Growth Cone Motility and Guidance
Fascin1 在生长锥运动和指导中的作用
- 批准号:
10606165 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Elucidating and bypassing molecular mechanisms that suppress Muller glia-dependent regeneration of cones in two zebrafish models of chronic retinal damage
阐明和绕过抑制两种慢性视网膜损伤斑马鱼模型中穆勒胶质细胞依赖性视锥细胞再生的分子机制
- 批准号:
10567836 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Mechanisms of sensory hair cell reinnervation following lateral line cranial nerve damage in Danio rerio
斑马鱼侧线脑神经损伤后感觉毛细胞神经支配的机制
- 批准号:
10749736 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Restoration of Optic Nerve Function Driven by In Vivo Multimodal Electrical Stimulation
体内多模式电刺激驱动视神经功能的恢复
- 批准号:
10720788 - 财政年份:2023
- 资助金额:
-- - 项目类别: