Multi-modal imaging of functional systems in the human brainstem

人类脑干功能系统的多模态成像

基本信息

项目摘要

The brainstem is the most important part of the brain, when it comes to sustaining our life. Despite its tremendous importance, it has been largely neglected by human neuroscience. The most important reason for this neglect lies in the poor performance of standard neuroscientific measurement methods, like functional magnetic resonance imaging (fMRI), in this part of the brain, which is mainly due to the elevated level of physiological noise. fMRI investigations have so far been restricted to basic activation studies of single brainstem nuclei, while investigations on functional connectivity have been mostly unsuccessful due to problems in the application of independent component analysis (ICA). This key method suffers from severe problems in the brainstem as standard approaches are unable to suppress physiological noise to a point, where signals of neuronal origin become the major source of variance in the data. The central goal of this project is to improve a new brainstem-fMRI approach, recently developed by the applicant, to a point where it can be used to reliably measure neuronal activity of single nuclei as well as inter-nuclear and nucleo-cortical connectivity. The new approach uses a radically different approach of physiological noise suppression and can be applied to standard fMRI datasets. To reach this goal, we will first optimize and motivate some ad hoc choices for parameters in previous successful analyses, like the number of dimensions for the ICA decomposition or the exact shape of the brainstem anatomical mask. Afterwards, the applicant together with the academic partner from the Martinos Center for Biomedical Imaging of Harvard University Boston will acquire a sample of 20-30 high-resolution anatomical scans on the local 7-Tesla high-field MRI scanner and develop a data fusion approach to combine these structural data with an existing 3-Tesla functional dataset of more than 100 subjects acquired by the applicant. The aim is to greatly improve the identification of anatomical structures underlying activation clusters in the brainstem. Finally, we will apply the improved method to three existing datasets of common chronic pain syndroms recently acquired by the academic partner. These include data on fibromyalgia, low back pain and carpal tunnel syndrome. The aim is to identify nuclei of relevance for pain modulatory processes and investigate, whether these nuclei show pathologically altered connectivity in chronic pain patients. Questions of interest are, if altered brainstem intrinsic connectivity may be a common mechanism to different pain syndromes, and whether neocortical or brainstem centers play the most important role in chronic pain.
脑干是大脑中最重要的部分,当涉及到维持我们的生命。尽管它非常重要,但它在很大程度上被人类神经科学所忽视。这种忽视的最重要原因在于标准的神经科学测量方法,如功能性磁共振成像(fMRI),在大脑的这一部分表现不佳,这主要是由于生理噪音水平升高。功能磁共振成像的研究迄今为止仅限于单个脑干核团的基本激活研究,而功能连接的研究由于独立成分分析(伊卡)应用中的问题而大多不成功。这种关键方法在脑干中存在严重问题,因为标准方法无法将生理噪声抑制到一定程度,其中神经元来源的信号成为数据中方差的主要来源。该项目的中心目标是改进申请人最近开发的一种新的脑干功能磁共振成像方法,使其能够可靠地测量单个核的神经元活动以及核间和核-皮质连接。新方法使用了一种完全不同的生理噪声抑制方法,可以应用于标准的fMRI数据集。为了实现这一目标,我们将首先优化和激励先前成功分析中的一些临时参数选择,例如伊卡分解的维数或脑干解剖掩模的确切形状。之后,申请人将与哈佛大学波士顿Martinos生物医学成像中心的学术合作伙伴一起在当地7特斯拉高场MRI扫描仪上获取20-30个高分辨率解剖扫描样本,并开发数据融合方法,将这些结构数据与申请人获取的100多名受试者的现有3特斯拉功能数据集相结合。其目的是大大提高识别解剖结构的激活集群在脑干。最后,我们将改进的方法应用于学术合作伙伴最近获得的三个现有的常见慢性疼痛综合征数据集。这些数据包括纤维肌痛、腰痛和腕管综合征。其目的是确定核的疼痛调节过程的相关性和调查,这些核是否显示病理改变的连接在慢性疼痛患者。感兴趣的问题是,如果改变脑干内在连接可能是一个共同的机制,不同的疼痛综合征,以及是否新皮层或脑干中心在慢性疼痛中发挥最重要的作用。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Advances in functional magnetic resonance imaging of the human brainstem
  • DOI:
    10.1016/j.neuroimage.2013.07.081
  • 发表时间:
    2014-02-01
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Beissner, Florian;Schumann, Andy;Baer, Karl-Juergen
  • 通讯作者:
    Baer, Karl-Juergen
The Autonomic Brain: An Activation Likelihood Estimation Meta-Analysis for Central Processing of Autonomic Function
  • DOI:
    10.1523/jneurosci.1103-13.2013
  • 发表时间:
    2013-06-19
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Beissner, Florian;Meissner, Karin;Napadow, Vitaly
  • 通讯作者:
    Napadow, Vitaly
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Florian Beissner其他文献

Professor Dr. Florian Beissner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
  • 批准号:
    61672236
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
  • 批准号:
    EP/Z531133/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Multi-scale, multi-modal X-ray imaging using speckle
使用散斑的多尺度、多模态 X 射线成像
  • 批准号:
    DE220101402
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
  • 批准号:
    10839518
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
  • 批准号:
    10816667
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Multi-modal Liquid Biopsy Early Assessment of Breast Cancer, Pancreatic Cancer, and Multiple Myeloma
乳腺癌、胰腺癌和多发性骨髓瘤的多模式液体活检早期评估
  • 批准号:
    10763336
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Multi-modal profiling of spatially resolved cell types mediating opioid withdrawal
介导阿片类药物戒断的空间分辨细胞类型的多模式分析
  • 批准号:
    10787010
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Artificial intelligence empowered multi-modal biomedical imaging
人工智能赋能多模态生物医学成像
  • 批准号:
    IM230100002
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Mid-Career Industry Fellowships
A multi-modal approach for efficient, point-of-care screening of hypertrophic cardiomyopathy
一种高效、即时筛查肥厚型心肌病的多模式方法
  • 批准号:
    10749588
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Multi-modal spatial genomics in the mouse and human brains
小鼠和人脑的多模式空间基因组学
  • 批准号:
    10760921
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Multi-modality optical imaging of single-cell dynamics using supercontinuum light source
使用超连续谱光源的单细胞动力学多模态光学成像
  • 批准号:
    10798646
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了