Additive Nanomanufacturing of Scalable, Three-dimensional Nano-Architectures for Ultra-lightweighting and Resilience

可扩展三维纳米结构的增材纳米制造,实现超轻量化和弹性

基本信息

项目摘要

Nanoscale materials such as nanotubes, nanofilms, and nanopillars, composed of carbon, metallic or ceramic material, have been found to exhibit near theoretical strength, damage tolerance, energy conversion and optical properties in their pristine form. When these nanoscale elements are precisely architected into well-defined, three-dimensional topologies, they form macroscopic structures that can reach near-theoretical strength with only a fraction of the mass densities of the starting materials. If such nano-architected structures are manufacturable, many applications are possible, e.g., ultra-lightweight, energy-absorbing materials, tissue engineering scaffolds, energy conversion and wave manipulation devices. Current nanofabrication technologies, based on laser-writing, are incapable of creating these nanostructures in dimensions larger than a few millimeters. While a variety of additive manufacturing approaches are capable of creating complex macroscopic three-dimensional objects, they have not achieved capabilities for creating architectures with nanoscale features. This project will advance knowledge in scalable nanomanufacturing of macroscopic objects comprised of precisely defined, three-dimensional nano-architectures for lightweighting and resilience. The researchers will conduct theoretical and experimental studies to understand, predict and control the interactions between light field, digital optics, and feedstock materials, leading to reliable production of large area, three-dimensional nano-architectures. The research requires understanding fundamental science and engineering disciplines, including nanomanufacturing, optics, mechanics, mechatronics, physics, and chemistry. The research results will be integrated into new curricula and projects to give hands-on research and education opportunities for high school, undergraduate, graduate and under-represented students.The project aims to build the theoretical and experimental foundations underpinning scalable additive nanomanufacturing, overcoming existing barrier in 3D printing, which is to achieve nano-scale precision. The research studies a process to create three-dimensional architectures with nanoscale features under controlled sub-wavelength light field projection onto feedstock primitives. To achieve optimal production speed, a multi-physics based modeling and experimental platforms are established to elucidate the kinetics governing the speed and resolution of the new printing mechanism. The research is then implemented with a new set of instrumentations that enable the parallel production of large area samples with nano-architectures. Additionally, this research establishes theoretical and experimental frameworks to predict and prevent defect generation while scaling up to dimensions over several orders of magnitude. This research enables a new concept of creating three-dimensional nano-architectures. It provides a scientific and engineering basis towards reliable upscaling of nano-architectures to components and devices for applications including structural supports, energy storage and conversion, and wave manipulations.
由碳、金属或陶瓷材料组成的纳米级材料,如纳米管、纳米薄膜和纳米微管,已被发现以其原始形式表现出接近理论强度、损伤容限、能量转换和光学性能。当这些纳米尺度的元素被精确地构建成定义良好的三维拓扑结构时,它们形成的宏观结构可以达到接近理论强度的水平,而初始材料的质量密度只有一小部分。如果这种纳米结构是可制造的,那么许多应用都是可能的,例如,超轻、能量吸收材料、组织工程支架、能量转换和波操纵装置。目前基于激光写入的纳米制造技术无法制造出尺寸大于几毫米的纳米结构。虽然各种添加剂制造方法能够创建复杂的宏观三维对象,但它们还没有实现创建具有纳米级特征的体系结构的能力。该项目将推进宏观物体的可扩展纳米制造方面的知识,这些宏观物体由用于轻量化和弹性的精确定义的三维纳米结构组成。研究人员将进行理论和实验研究,以了解、预测和控制光场、数字光学和原料材料之间的相互作用,从而可靠地生产大面积、三维纳米结构。这项研究需要了解基础科学和工程学科,包括纳米制造、光学、力学、机电一体化、物理和化学。研究成果将被整合到新的课程和项目中,为高中、本科生、研究生和代表性不足的学生提供动手研究和教育的机会。该项目旨在建立支持可扩展添加剂纳米制造的理论和实验基础,克服3D打印中存在的障碍,即实现纳米级精度。研究了在可控的亚波长光场投影到原料基元上的情况下,创建具有纳米级特征的三维结构的过程。为了获得最佳的生产速度,建立了一个基于多物理的建模和实验平台,以阐明控制新打印机构速度和分辨率的动力学。然后用一套新的仪器来实施这项研究,这些仪器能够并行生产具有纳米结构的大面积样品。此外,这项研究建立了理论和实验框架,以预测和防止缺陷的产生,同时扩大到几个数量级的维度。这项研究使创造三维纳米结构的新概念成为可能。它为将纳米结构可靠地扩展到组件和设备提供了科学和工程基础,这些应用包括结构支撑、能量存储和转换以及波操纵。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Achieving the Upper Bound of Piezoelectric Response in Tunable, Wearable 3D Printed Nanocomposites
  • DOI:
    10.1002/adfm.201903866
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Desheng Yao;Huachen Cui;Ryan Hensleigh;Parker Smith;Sam Alford;Dominic Bernero;Sydney Bush;
  • 通讯作者:
    Desheng Yao;Huachen Cui;Ryan Hensleigh;Parker Smith;Sam Alford;Dominic Bernero;Sydney Bush;
Additive manufacturing of complex micro-architected graphene aerogels
  • DOI:
    10.1039/c8mh00668g
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
    13.3
  • 作者:
    Hensleigh, Ryan M.;Cui, Huachen;Worsley, Marcus A.
  • 通讯作者:
    Worsley, Marcus A.
Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response
  • DOI:
    10.1038/s41563-018-0268-1
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
    41.2
  • 作者:
    Cui, Huachen;Hensleigh, Ryan;Zheng, Xiaoyu (Rayne)
  • 通讯作者:
    Zheng, Xiaoyu (Rayne)
Fabrication and experimental demonstration of a hybrid resonant acoustic gradient index metasurface at 40 kHz
  • DOI:
    10.1063/1.5095963
  • 发表时间:
    2019-06-10
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Gerard, Nikhil J. R. K.;Cui, Huachen;Jing, Yun
  • 通讯作者:
    Jing, Yun
Additive Manufacturing and size-dependent mechanical properties of three-dimensional microarchitected, high-temperature ceramic metamaterials
  • DOI:
    10.1557/jmr.2018.11
  • 发表时间:
    2018-02-14
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Cui, Huachen;Hensleigh, Ryan;Zheng, Xiaoyu
  • 通讯作者:
    Zheng, Xiaoyu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaoyu Zheng其他文献

Source term uncertainty analysis: probabilistic approaches and applications to a BWR severe accident
源项不确定性分析:沸水堆严重事故的概率方法和应用
  • DOI:
    10.1299/mej.15-00032
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Xiaoyu Zheng;Hiroto Itoh;H. Tamaki;Y. Maruyama
  • 通讯作者:
    Y. Maruyama
Invariant-Based Augmented Reality on Mobile Phones
手机上基于不变的增强现实
  • DOI:
    10.4304/jmm.5.6.588-595
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jie Shen;Lei Luo;Xiaoyu Zheng
  • 通讯作者:
    Xiaoyu Zheng
The expanding repertoire of immune‐related molecules with antimicrobial activity in penaeid shrimps: a review
  • DOI:
    10.1111/raq.12551
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Jude Juventus Aweya;Zhihong Zheng;Xiaoyu Zheng;Defu Yao;Yueling Zhang
  • 通讯作者:
    Yueling Zhang
Experimental Insights into the Interplay between Histone Modifiers and p53 in Regulating Gene Expression
  • DOI:
    10.3390/ijms241311032.
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
  • 作者:
    Hyun-Min Kim;Xiaoyu Zheng;Ethan Lee
  • 通讯作者:
    Ethan Lee
Optimization Problem of Multibeam Bathymetry Based on Analytical Geometry
基于解析几何的多波束测深优化问题

Xiaoyu Zheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaoyu Zheng', 18)}}的其他基金

CAREER: Charge-Programmed Additive Microfabrication Process for Multi-Materials and Multi-Functionalities
职业:多材料和多功能的电荷编程增材微加工工艺
  • 批准号:
    2309828
  • 财政年份:
    2022
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Inverse Design of Architected Materials with Prescribed Behaviors via Graph Based Networks and Additive Manufacturing
DMREF/协作研究:通过基于图形的网络和增材制造对具有规定行为的建筑材料进行逆向设计
  • 批准号:
    2119643
  • 财政年份:
    2022
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
CAREER: Charge-Programmed Additive Microfabrication Process for Multi-Materials and Multi-Functionalities
职业:多材料和多功能的电荷编程增材微加工工艺
  • 批准号:
    2048200
  • 财政年份:
    2021
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Additive Nanomanufacturing of Scalable, Three-dimensional Nano-Architectures for Ultra-lightweighting and Resilience
可扩展三维纳米结构的增材纳米制造,实现超轻量化和弹性
  • 批准号:
    2001677
  • 财政年份:
    2019
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Vorticity driven dynamics in orientationally ordered systems
定向有序系统中的涡驱动动力学
  • 批准号:
    1212046
  • 财政年份:
    2012
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Mathematics of Anisotropic Electrical and Dielectric Properties of Nanocomposites
纳米复合材料各向异性电学和介电性能的数学
  • 批准号:
    0807954
  • 财政年份:
    2008
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315996
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
  • 批准号:
    2225900
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
  • 批准号:
    2225896
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
MCA: Scalable Nanomanufacturing of Earth-Abundant Electrochromics
MCA:地球上丰富的电致变色材料的可扩展纳米制造
  • 批准号:
    2120947
  • 财政年份:
    2022
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Scalable Nanomanufacturing of Organic Electronics Using Laser Patterning in a Continuous Solvent Flow Liquid Cell
在连续溶剂流液体池中使用激光图案化进行有机电子产品的可扩展纳米制造
  • 批准号:
    2208009
  • 财政年份:
    2022
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Scalable nanomanufacturing of 2D layered materials and their integration into nano-enabled systems
二维层状材料的可扩展纳米制造及其集成到纳米系统中
  • 批准号:
    RGPIN-2019-06345
  • 财政年份:
    2022
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable nanomanufacturing of 2D layered materials and their integration into nano-enabled systems
二维层状材料的可扩展纳米制造及其集成到纳米系统中
  • 批准号:
    RGPIN-2019-06345
  • 财政年份:
    2021
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Scalable Nanomanufacturing of Two-Dimensional Topological Materials for Quantum Device Applications
职业:用于量子器件应用的二维拓扑材料的可扩展纳米制造
  • 批准号:
    2046936
  • 财政年份:
    2021
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Scalable Nanomanufacturing of Uniform Inorganic Nanoparticles Using Jet-Mixing Reactors
使用喷射混合反应器大规模纳米制造均匀无机纳米粒子
  • 批准号:
    2111412
  • 财政年份:
    2021
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了