GOALI: Manufacturing USA: Determining the Role of Nanoscale Physics in the Microscale Selective Laser Sintering Process using a Multiscale Computational Modeling Approach
目标:美国制造:使用多尺度计算建模方法确定纳米物理在微尺度选择性激光烧结过程中的作用
基本信息
- 批准号:1728313
- 负责人:
- 金额:$ 39.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Flexible electronic devices are of great interest due to the rapid expansion of wearable devices for health monitoring and the rise of the Internet-of-Things. One key factor limiting their development is the integration of diverse high-quality, silicon-based electrical components with flexible substrates. This integration is difficult because the small electrical connections needed to interface the silicon chips with flexible substrates cannot be fabricated using existing manufacturing processes. A new process called microscale selective laser sintering (microscale-SLS) has been developed which offers the potential to overcome this manufacturing limitation by successfully sintering (fusing) nanoscale particles to create complex, three-dimensional, metal parts with micron-scale resolution on almost any substrate. Currently the commercial viability of the process is limited by a lack of understanding of the underlying physics governing the sintering process, and an inability to accurately model the process outcomes. This Grant Opportunities for Academic Liaison with Industry (GOALI) research project will overcome this limitation by developing fundamental science regarding the impact of nanoscale physics on the mass and energy transfer within the microscale-SLS process, and ultimately the final part integrity. As this project is an industry-university collaborative effort between NXP USA and the University of Texas Austin (UTA), it will provide both educational experiences and industrial traineeships for graduate and undergraduate students. A particular focus on providing opportunities and training to students from underrepresented backgrounds in engineering will be pursued through senior design projects and the Nanomanufacturing Systems for Mobile Computing and Mobile Energy Technologies (NASCENT) Center's High School Fellows program.The research objective of the project is to understand the fundamental science regarding mechanisms by which thin layers of nanoparticles (NPs) are selectively laser sintered to realize 3D structures with resolutions of around one micron. The central hypothesis is that nanoscale effects such as surface diffusion, near-field radiation, and light scattering dominate the part-formation process in microscale-SLS, and therefore must be considered to accurately model microscale-SLS part formation. The specific aims of this project are to determine the mechanisms for (1) NP reshaping during the microscale-SLS process, (2) light penetration/absorption in the NP powder bed, and (3) heat transfer within the NP powder bed, and (4) to determine the relationship between NP-level mechanisms and continuum-level parameters for modeling part formation. A multiscale computational modeling approach for the macroscale selective laser sintering process (MCM-SLS) will be leveraged to construct a model of the microscale-SLS part formation process. It is expected that the development of accurate models of the microscale-SLS process will have a positive impact on the manufacturing of three-dimensional microscale interconnect structures by (1) reducing the time required to determine the optimal process parameters for microscale-SLS parts, (2) improving the scientific understanding of how part design affects part quality/yield, and (3) allowing designers to estimate part quality (strength, shape, conductivity, etc.) before fabrication. The computational models will be validated in collaboration with NXP USA using a prototype microscale-SLS system at their facilities.
由于用于健康监测的可穿戴设备的快速扩展和物联网的兴起,柔性电子设备引起了极大的兴趣。限制其发展的一个关键因素是将各种高质量的硅基电子元件与柔性基板集成。这种集成是困难的,因为使用现有的制造工艺无法制造将硅芯片与柔性基板接合所需的小电连接。一种称为微尺度选择性激光烧结(microscale-SLS)的新工艺已经开发出来,它提供了克服这种制造限制的潜力,通过成功地烧结(融合)纳米级颗粒,在几乎任何基板上创建具有微米级分辨率的复杂三维金属部件。目前,该工艺的商业可行性受到缺乏对控制烧结工艺的基本物理学的理解以及无法准确模拟工艺结果的限制。该研究项目将通过开发有关纳米级物理学对微观尺度SLS过程中的质量和能量转移以及最终最终零件完整性的影响的基础科学来克服这一限制。由于该项目是恩智浦美国公司与德克萨斯大学奥斯汀分校(UTA)之间的产学合作项目,因此将为研究生和本科生提供教育体验和行业培训机会。通过高级设计项目和移动的计算和移动的能源技术纳米制造系统(NASCENT)中心的高中研究员项目,将特别关注为来自工程背景的学生提供机会和培训。该项目的研究目标是了解纳米颗粒薄层(NP)被选择性地激光烧结以实现分辨率约为1微米的3D结构。中心假设是,纳米级的影响,如表面扩散,近场辐射,光散射占主导地位的部分形成过程中的微尺度SLS,因此必须考虑到精确建模微尺度SLS部分形成。该项目的具体目标是确定(1)在微尺度SLS过程中NP重塑的机制,(2)NP粉末床中的光穿透/吸收,以及(3)NP粉末床内的热传递,以及(4)确定NP级机制和建模部件形成的连续级参数之间的关系。一个多尺度的计算建模方法的宏观尺度选择性激光烧结过程(MCM-SLS)将被用来构建一个模型的微观尺度SLS零件形成过程。预期微尺度SLS工艺的精确模型的开发将通过以下方式对三维微尺度互连结构的制造产生积极影响:(1)减少确定微尺度SLS部件的最佳工艺参数所需的时间,(2)提高对部件设计如何影响部件质量/产量的科学理解,以及(3)允许设计者估计部件质量(强度、形状、导电性等)。在制造之前。计算模型将与恩智浦美国公司合作,在其工厂使用原型微型SLS系统进行验证。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncertainty Analysis of Near-Field Thermal Energy Transfer within Nanoparticle Packing
纳米颗粒填料内近场热能传递的不确定性分析
- DOI:10.1109/itherm.2018.8419492
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Yuksel, Anil;Yu, Edward T.;Cullinan, Michael;Murthy, Jayathi
- 通讯作者:Murthy, Jayathi
Slot-Die Coating Operability Window for Nanoparticle Bed Deposition in a Microscale Selective Laser Sintering Tool
- DOI:10.1115/1.4049668
- 发表时间:2020-12-01
- 期刊:
- 影响因子:1
- 作者:Behera, Dipankar;Liao, Daniel;Cullinan, Michael A.
- 通讯作者:Cullinan, Michael A.
Experimental Study of the Subsystems in a Microscale Additive Manufacturing Process
微尺度增材制造过程中子系统的实验研究
- DOI:10.1007/s11837-018-3223-3
- 发表时间:2019
- 期刊:
- 影响因子:2.6
- 作者:Roy, Nilabh K.;Behera, Dipankar;Dibua, Obehi G.;Foong, Chee S.;Cullinan, Michael
- 通讯作者:Cullinan, Michael
Fast Trajectory Tracking of a Flexure-Based, Multiaxis Nanopositioner With 50-mm Travel
- DOI:10.1109/tmech.2018.2871162
- 发表时间:2018-12-01
- 期刊:
- 影响因子:6.4
- 作者:Roy, Nilabh K.;Cullinan, Michael A.
- 通讯作者:Cullinan, Michael A.
Electromagnetic Thermal Energy Transfer in Nanoparticle Assemblies Below Diffraction Limit
纳米颗粒组件中低于衍射极限的电磁热能传递
- DOI:10.1115/1.4047631
- 发表时间:2021
- 期刊:
- 影响因子:2.1
- 作者:Yuksel, Anil;Yu, Edward T.;Cullinan, Michael;Murthy, Jayathi
- 通讯作者:Murthy, Jayathi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Cullinan其他文献
A fracture model for exfoliation of thin silicon films
- DOI:
10.1007/s10704-019-00350-4 - 发表时间:
2019-02-14 - 期刊:
- 影响因子:2.500
- 作者:
Martin Ward;Michael Cullinan - 通讯作者:
Michael Cullinan
Characterization of porosity in periodic 3D nanostructures using spectroscopic scatterometry
使用光谱散射测量法表征周期性 3D 纳米结构的孔隙率
- DOI:
10.1116/6.0003035 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
K. Lee;Kun;Barbara Groh;I‐Te Chen;Michael Cullinan;Chih - 通讯作者:
Chih
Manufacturing and metrology of 3D holographic structure nanopatterns in roll-to-roll fabrication
卷对卷制造中 3D 全息结构纳米图案的制造和计量
- DOI:
10.1117/12.3010004 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Barbara Groh;Kwon Sang Lee;Luis Aguirre;Michael Cullinan;Chih - 通讯作者:
Chih
Response Speed Characterization of a Thermally Actuated Programmable Metamaterial
热驱动可编程超材料的响应速度表征
- DOI:
10.1109/jmems.2023.3332595 - 发表时间:
2024 - 期刊:
- 影响因子:2.7
- 作者:
Chenyang Luo;Jonathan B. Hopkins;Michael Cullinan - 通讯作者:
Michael Cullinan
Michael Cullinan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Cullinan', 18)}}的其他基金
PFI-TT: Microscale Laser Sintering to Fabricate High-Density 3D Structures
PFI-TT:微型激光烧结制造高密度 3D 结构
- 批准号:
2141044 - 财政年份:2022
- 资助金额:
$ 39.14万 - 项目类别:
Standard Grant
FMRG: Cyber: Manufacturing USA: Cyber-Enabled, High-Throughput Manufacturing of Multi-Material, 3D Nanostructures
FMRG:网络:美国制造:网络支持的多材料、3D 纳米结构的高通量制造
- 批准号:
2229036 - 财政年份:2022
- 资助金额:
$ 39.14万 - 项目类别:
Continuing Grant
I-Corps: Microscale Selective Laser Sintering Process
I-Corps:微型选择性激光烧结工艺
- 批准号:
2140503 - 财政年份:2021
- 资助金额:
$ 39.14万 - 项目类别:
Standard Grant
相似海外基金
FMRG: Cyber: Manufacturing USA: Material-on-demand manufacturing through convergence of manufacturing, AI and materials science
FMRG:网络:美国制造:通过制造、人工智能和材料科学的融合实现按需制造材料
- 批准号:
2328395 - 财政年份:2024
- 资助金额:
$ 39.14万 - 项目类别:
Standard Grant
FMRG: Cyber: Manufacturing USA: NextG-Enabled Manufacturing of the Future (NextGEM)
FMRG:网络:美国制造:支持 NextG 的未来制造 (NextGEM)
- 批准号:
2328260 - 财政年份:2024
- 资助金额:
$ 39.14万 - 项目类别:
Standard Grant
CAREER: Manufacturing USA: Deep Learning to Understand Fatigue Performance and Processing Relationship of Complex Parts by Additive Manufacturing for High-consequence Applications
职业:美国制造:通过深度学习了解复杂零件的疲劳性能和加工关系,通过增材制造实现高后果应用
- 批准号:
2239307 - 财政年份:2023
- 资助金额:
$ 39.14万 - 项目类别:
Standard Grant
FMRG: Cyber: Manufacturing USA: Manufacturing of Next-Generation Perovskite Semiconductors at Scale
FMRG:网络:美国制造:大规模制造下一代钙钛矿半导体
- 批准号:
2328010 - 财政年份:2023
- 资助金额:
$ 39.14万 - 项目类别:
Standard Grant
ERI: Manufacturing USA: Additive Manufacturing of Iron based Shape Memory Alloy
ERI:美国制造:铁基形状记忆合金的增材制造
- 批准号:
2301766 - 财政年份:2023
- 资助金额:
$ 39.14万 - 项目类别:
Standard Grant
FMRG: Cyber: Manufacturing USA: Exploiting Spatio-Temporal Interdependency Between Electrochemical Manufacturing and Power Grid to Optimize Flexibility and Sustainability
FMRG:网络:美国制造:利用电化学制造和电网之间的时空相互依赖性来优化灵活性和可持续性
- 批准号:
2328160 - 财政年份:2023
- 资助金额:
$ 39.14万 - 项目类别:
Standard Grant
FMRG: Cyber: Manufacturing USA: Cyber-Enabled, High-Throughput Manufacturing of Multi-Material, 3D Nanostructures
FMRG:网络:美国制造:网络支持的多材料、3D 纳米结构的高通量制造
- 批准号:
2229036 - 财政年份:2022
- 资助金额:
$ 39.14万 - 项目类别:
Continuing Grant
FMRG: Manufacturing USA: Cyber: Data-Driven Methods for Future Cyber Manufacturing as a Service
FMRG:美国制造:网络:未来网络制造即服务的数据驱动方法
- 批准号:
2229260 - 财政年份:2022
- 资助金额:
$ 39.14万 - 项目类别:
Continuing Grant
FMRG: Manufacturing USA: Cyber: Privacy-Preserving Tiny Machine Learning Edge Analytics to Enable AI-Commons for Secure Manufacturing
FMRG:美国制造业:网络:保护隐私的小型机器学习边缘分析,以实现 AI 共享以实现安全制造
- 批准号:
2134667 - 财政年份:2021
- 资助金额:
$ 39.14万 - 项目类别:
Standard Grant
Manufacturing Talent Development Innovation Laboratory: A Workshop for Manufacturing USA Institute Workforce Development Stakeholders
制造业人才发展创新实验室:美国制造业研究所劳动力发展利益相关者研讨会
- 批准号:
2034255 - 财政年份:2020
- 资助金额:
$ 39.14万 - 项目类别:
Standard Grant














{{item.name}}会员




