SpecEES: Chip-Scale Millimeter-Wave Spectrum / Signal Analyzer Using Spin-Wave Diffraction and Interference
SpecEES:使用自旋波衍射和干涉的芯片级毫米波频谱/信号分析仪
基本信息
- 批准号:1731824
- 负责人:
- 金额:$ 69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The dramatic growth in wideband cellular networks, the proliferation of public and private WiFi access points, and the impending demand of machine-to-machine (M2M) and Internet-of-Things (IoT) devices put a premium on the efficient use of the available electromagnetic spectrum. Current regulation regarding usage of the electromagnetic spectrum follows a static licensed allocation model. However, it is widely recognized that this model is no longer able to meet the rapidly growing demands for spectrum access. Dynamic spectrum access and cognitive radios have been proposed as solutions to the problem, but their ultimate success is predicated upon the existence of high-quality spectrum occupancy data. This project proposes a bold new concept for dynamic spectrum data analysis, which will significantly improve the efficiency of radio spectrum utilization while at the same time providing improved energy efficiency. Specifically, this concept is based on a fundamentally new way of processing millimeter-wave and microwave information using spin waves in magnetic thin films. Such new technology will make possible the replacement of today's bulky passive electromagnetic systems by a chip-scale, low-power device. If successful, the devices proposed in this project will become a new class of millimeter-wave and microwave components, performing many functions that today are only achievable with transistor-based circuits. Students will be educated and trained in this new technology. Graduate students will be exposed to avenues for commercialization through University of Notre Dame's Innovation Park and the Engineering Science and Technology Entrepreneurship Excellence Masters (ESTEEM) Program that partners science, engineering, and business students with research faculty toward the goal of commercializing locally-generated fundamental research. Local high-school teachers will participate through an NSF Research Experiences for Teachers (RET) program, which will also include faculty from the local Ivy Tech Community College.This proposal presents a micromagnetics-based real-time spectrum sensor that is low-cost, high-performance, and chip-scale. The combination of these features means this sensor can be deployed on individual devices in a network or IoT devices to provide the high spatial resolution necessary to realize spatial dynamic spectrum access and to provide the speed and resolution necessary to realize temporal dynamic spectrum access. In the proposed scheme, millimeter-wave and microwave signals are converted to spin-waves and processed by spin-wave interference, and then the intensity distribution of the interference patterns is converted back to the electrical domain. In particular, a spin-wave-based frequency spectrum and signal analyzer device is proposed that can perform high-resolution, real-time, wideband spectral analysis on millimeter-wave and microwave signals and provide an on-chip, low-power compact replacement for bulky and expensive spectrum analyzer instruments, which contain a large assembly of discrete microwave components (filters, sweep-oscillators, etc.). The benefits of this scheme, which combine small size, low power, and high speed, derive from the low-power and short-wavelength characteristics of spin waves. As such, our approach provides a potential solution to a particularly challenging task in modern electronics, namely to realize devices that are both fast and low-power. In conventional CMOS-based electronics, power consumption increases quickly with increasing computing speed (clock rate), which makes it very challenging (maybe impossible) to simultaneously achieve low power and high speed (several tens of gigahertz) operation in electrical devices. Our proposed spin-wave-based devices may provide a solution to this fundamental problem.
宽带蜂窝网络的急剧增长,公共和私人WiFi接入点的激增,以及即将到来的机器对机器(M2M)和物联网(IoT)设备的需求,使得有效利用可用电磁频谱变得非常重要。关于电磁频谱使用的现行法规遵循静态许可分配模型。然而,人们普遍认为这种模式已经不能满足快速增长的频谱接入需求。已经提出了动态频谱接入和认知无线电作为解决问题的方法,但它们的最终成功取决于是否存在高质量的频谱占用数据。该项目提出了一个大胆的动态频谱数据分析新概念,将显著提高无线电频谱利用效率,同时提高能源效率。具体来说,这个概念是基于一种利用磁性薄膜中的自旋波处理毫米波和微波信息的全新方法。这种新技术将有可能用芯片级、低功耗的设备取代目前笨重的无源电磁系统。如果成功,该项目中提出的器件将成为一类新的毫米波和微波元件,执行许多目前只能通过基于晶体管的电路实现的功能。学生们将接受这项新技术的教育和培训。研究生将通过圣母大学创新园和工程科学与技术创业卓越硕士(ESTEEM)项目接触到商业化的途径,该项目将科学、工程和商业专业的学生与研究人员合作,实现当地基础研究商业化的目标。当地的高中教师将通过国家科学基金会的教师研究经验(RET)项目参加,该项目还将包括当地常春藤技术社区学院的教师。提出了一种低成本、高性能、芯片级的基于微磁的实时频谱传感器。这些特性的结合意味着该传感器可以部署在网络或物联网设备中的单个设备上,以提供实现空间动态频谱访问所需的高空间分辨率,并提供实现时间动态频谱访问所需的速度和分辨率。在该方案中,将毫米波和微波信号转换为自旋波并进行自旋波干涉处理,然后将干涉图样的强度分布转换回电域。特别是,提出了一种基于自旋波的频谱和信号分析装置,可以对毫米波和微波信号进行高分辨率,实时,宽带频谱分析,并提供片上,低功耗紧凑的替代笨重且昂贵的频谱分析仪器,这些仪器包含大量离散微波元件(滤波器,扫描振荡器等)。该方案结合了小尺寸、低功耗和高速度的优点,源于自旋波的低功耗和短波长的特性。因此,我们的方法为现代电子产品中一个特别具有挑战性的任务提供了一个潜在的解决方案,即实现既快速又低功耗的设备。在传统的基于cmos的电子产品中,功耗随着计算速度(时钟速率)的增加而迅速增加,这使得在电气设备中同时实现低功耗和高速(几十千兆赫兹)的操作非常具有挑战性(可能是不可能的)。我们提出的基于自旋波的器件可能为这一基本问题提供解决方案。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Complex Permittivity of Gadolinium Gallium Garnet from 8.2 to 12.4 GHz
8.2 至 12.4 GHz 钆镓石榴石的复介电常数
- DOI:10.1109/lmag.2021.3132850
- 发表时间:2021
- 期刊:
- 影响因子:1.2
- 作者:Connelly, David;Aquino, Hadrian;Robbins, Maxwell;Bernstein, Gary Hirshon;Orlov, Alexei;Porod, Wolfgang;Chisum, Jonathan
- 通讯作者:Chisum, Jonathan
Design of a Coplanar-Waveguide-Based Microwave-to-Spin-Wave Transducer
基于共面波导的微波自旋波换能器的设计
- DOI:10.1109/tmag.2021.3084097
- 发表时间:2021
- 期刊:
- 影响因子:2.1
- 作者:Aquino, Hadrian Renaldo;Connelly, David;Orlov, Alexei;Chisum, Jonathan;Bernstein, Gary H.;Porod, Wolfgang
- 通讯作者:Porod, Wolfgang
Towards a Chip-Scale Millimeter-Wave Spectrum/Signal Analyzer Using Spin-Wave Diffraction and Interference
使用自旋波衍射和干涉的芯片级毫米波频谱/信号分析仪
- DOI:10.1109/snw50361.2020.9131613
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Aquino, H.;Connelly, D.;Papp, A.;Orlov, A.;Chisum, J.;Bernstein, G. H.;Porod, W.
- 通讯作者:Porod, W.
Using Coplanar Waveguides as Spin-Wave Sources with Improved Bandwidth
使用共面波导作为具有改进带宽的自旋波源
- DOI:10.1109/drc50226.2020.9135163
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Aquino, H.;Connelly, D.;Orlov, A.;Chisum, J.;Bernstein, G. H.;Porod, W.
- 通讯作者:Porod, W.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wolfgang Porod其他文献
Contiguous clock lines for pipelined nanomagnet logic
- DOI:
10.1007/s10825-014-0598-4 - 发表时间:
2014-07-31 - 期刊:
- 影响因子:2.500
- 作者:
Katherine C. Butler;Gary H. Bernstein;Gyorgy Csaba;Wolfgang Porod;X. Sharon Hu;Michael Niemier - 通讯作者:
Michael Niemier
Investigation of the nonlinearity properties of the DC I-V characteristics of metal-insulator-metal (MIM) tunnel diodes with double-layer insulators
- DOI:
10.1007/s10825-006-0083-9 - 发表时间:
2007-01-18 - 期刊:
- 影响因子:2.500
- 作者:
Barnabás Hegyi;Árpád Csurgay;Wolfgang Porod - 通讯作者:
Wolfgang Porod
Wolfgang Porod的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wolfgang Porod', 18)}}的其他基金
EAGER: Computer Architectures for 2020 and Beyond
EAGER:2020 年及以后的计算机架构
- 批准号:
1344531 - 财政年份:2013
- 资助金额:
$ 69万 - 项目类别:
Standard Grant
NEB: Physics-Inspired Non-Boolean Computation based on Spatial- Temporal Wave Excitations
NEB:基于时空波激励的物理启发非布尔计算
- 批准号:
1124850 - 财政年份:2011
- 资助金额:
$ 69万 - 项目类别:
Standard Grant
MIND NanoArchitecture Workshop: Exploring Design with post-CMOS Devices
MIND NanoArchitecture 研讨会:探索后 CMOS 器件设计
- 批准号:
0840741 - 财政年份:2008
- 资助金额:
$ 69万 - 项目类别:
Standard Grant
RET Site: Notre Dame RET Site in Engineering
RET 站点:圣母大学 RET 工程站点
- 批准号:
0743109 - 财政年份:2008
- 资助金额:
$ 69万 - 项目类别:
Standard Grant
NUE: A Freshman-Level Introduction to Nanotechnology based on Scanning-Probe Instruments
NUE:基于扫描探针仪器的纳米技术新生级简介
- 批准号:
0304089 - 财政年份:2003
- 资助金额:
$ 69万 - 项目类别:
Standard Grant
NER: Computing Architectures for Coupled Nanomagnets
NER:耦合纳米磁体的计算架构
- 批准号:
0210421 - 财政年份:2002
- 资助金额:
$ 69万 - 项目类别:
Standard Grant
Fifth International Workshop on Computational Electronics to be held at the University of Notre Dame, May 28-30, 1997
第五届计算电子学国际研讨会将于 1997 年 5 月 28-30 日在圣母大学举行
- 批准号:
9612908 - 财政年份:1996
- 资助金额:
$ 69万 - 项目类别:
Standard Grant
U.S.-Hungary Research on Quantum Cellular Neural Networks and Coupled Nanoelectronic Devices
美国-匈牙利关于量子细胞神经网络和耦合纳米电子器件的研究
- 批准号:
9515497 - 财政年份:1996
- 资助金额:
$ 69万 - 项目类别:
Standard Grant
相似国自然基金
CHIP通过泛素化修饰RIP3调控巨噬细胞
坏死性凋亡在角膜新生血管形成中的作
用
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
Triptonide 通过 CHIP 介导的蛋白酶体途径清
除野生型IDH1 急性髓系白血病细胞的机制
研究
- 批准号:TGY24H080029
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
TAT-CHIP 融合蛋白减轻脓毒症心功能障碍的作用及机制研究
- 批准号:
- 批准年份:2024
- 资助金额:30.0 万元
- 项目类别:省市级项目
维生素D受体通过CHIP/Sirt6信号通路抑制肠道成纤维细胞活化的机制研究
- 批准号:82300582
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
黄蒲通窍胶囊调控CHIP泛素-蛋白酶体途径降解异常tau蛋白治疗阿尔茨海默病作用机制研究
- 批准号:82374553
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
Tet2缺失介导的不确定潜能的克隆性造血(CHIP)调控NLRP3/IL-1β在腹主动脉瘤发生发展中的作用和机制
- 批准号:82371594
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
衰老相关蛋白CHIP调控IRP2的分子机制及在多巴胺能神经元退行性变中的作用
- 批准号:82301787
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CHIP调控FOXN3泛素化减轻主动脉瓣钙化机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PRDX4/FSHR/CHIP轴维护颗粒细胞内质网蛋白质稳态在延缓卵巢功能减退中的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
E3泛素连接酶CHIP抑制类风湿关节炎滑膜炎症的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
CAREER: Semiconductor on Nitride PhoXonic Integrated Circuit (SONIC) Platform for Chip-Scale RF and Optical Signal Processing
职业:用于芯片级射频和光信号处理的氮化物 PhoXonic 集成电路 (SONIC) 平台上的半导体
- 批准号:
2340405 - 财政年份:2024
- 资助金额:
$ 69万 - 项目类别:
Continuing Grant
Chip-scale Atomic Systems for a Quantum Navigator
用于量子导航器的芯片级原子系统
- 批准号:
EP/X012689/1 - 财政年份:2023
- 资助金额:
$ 69万 - 项目类别:
Research Grant
SBIR Phase II: Chip-Scale Optical Frequency Standards
SBIR 第二阶段:芯片级光频率标准
- 批准号:
2322392 - 财政年份:2023
- 资助金额:
$ 69万 - 项目类别:
Cooperative Agreement
CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip
职业:在集成光子芯片上生成和检测大规模量子纠缠
- 批准号:
2238096 - 财政年份:2023
- 资助金额:
$ 69万 - 项目类别:
Continuing Grant
Silicon Photonic Integrated Circuits for Chip-Scale Thermal and Cold Atom Sensors
用于芯片级热原子和冷原子传感器的硅光子集成电路
- 批准号:
2887681 - 财政年份:2023
- 资助金额:
$ 69万 - 项目类别:
Studentship
Precision Rulers for the Visible - Chip Scale Optical Frequency Combs
可见光精密尺 - 芯片级光学频率梳
- 批准号:
DE230100964 - 财政年份:2023
- 资助金额:
$ 69万 - 项目类别:
Discovery Early Career Researcher Award
Chip-Scale Intraoperative Optical Navigation with Immunotargeted Upconverting Nanoparticles
使用免疫靶向上转换纳米颗粒的芯片级术中光学导航
- 批准号:
10743477 - 财政年份:2023
- 资助金额:
$ 69万 - 项目类别:
A Chip-Scale 2-Photon Rubidium Atomic Clock
芯片级 2 光子铷原子钟
- 批准号:
EP/Y00485X/1 - 财政年份:2023
- 资助金额:
$ 69万 - 项目类别:
Research Grant
PIC: Navigation grade chip scale gyro enabled by weak value amplification
PIC:通过弱值放大实现的导航级芯片级陀螺仪
- 批准号:
2330328 - 财政年份:2023
- 资助金额:
$ 69万 - 项目类别:
Standard Grant
Collaborative Research: Photonic Chip-Scale Time Crystals
合作研究:光子芯片级时间晶体
- 批准号:
2131402 - 财政年份:2022
- 资助金额:
$ 69万 - 项目类别:
Standard Grant