ATD: Multimode Machine Learning and Deep GeoNetworks for Anomaly Detection
ATD:用于异常检测的多模式机器学习和深度地理网络
基本信息
- 批准号:1737943
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research effort creates mathematical concepts and numerical methods for the analysis of spatiotemporal datasets with a special emphasis on anomaly detection. Early and accurate detection of unusual events and forecasts of future threats are critical in designing an effective response to them. Current algorithms for threat detection are often unable to keep up with the numerous demands, changing environments, and the huge amounts of spatiotemporal data that need to be processed and analyzed to accomplish these tasks. Uncertainty, scale, non-stationarity, noise, and heterogeneity are fundamental issues impeding progress at all phases of the pipeline that creates knowledge from data. The goal of this research effort is to develop novel mathematical concepts and computational methods that can detect anomalies in heterogenous, large-scale, spatiotemporal datasets. Beyond the project's broad technological impact, it serves as a model for the kind of cross-disciplinary activity critical for research and education at the mathematics/engineering frontier.The PI will devise efficient, robust, and scalable algorithms for unsupervised and semi-supervised learning. In particular, the PI will focus on the development of two approaches: (i) A multimodal diffusion framework for unsupervised prediction of anomalies from spatiotemporal data. Here, multimode refers to the fact that data may have different modalities, such as text, images, geolocations, etc. (ii) A scalable framework for semi-supervised learning on graph-structured data, based on the aforementioned multimodal diffusion framework and on a novel variant of deep convolutional networks specifically designed to operate on spatiotemporal data. The expected success of this project is based on existing achievements by the investigator in developing advanced mathematical concepts and turning them into real-world applications.
这项研究工作创造了数学概念和数值方法的时空数据集的分析,特别强调异常检测。 早期和准确地发现异常事件并预测未来的威胁对于设计有效的应对措施至关重要。目前的威胁检测算法往往无法跟上众多的需求,不断变化的环境,以及需要处理和分析以完成这些任务的大量时空数据。 不确定性、规模、非平稳性、噪声和异质性是阻碍从数据中创建知识的管道的所有阶段取得进展的根本问题。 这项研究工作的目标是开发新的数学概念和计算方法,可以检测异常的异质性,大规模,时空数据集。 除了广泛的技术影响之外,该项目还为数学/工程前沿的研究和教育提供了一种跨学科活动的模式。PI将为无监督和半监督学习设计高效,强大和可扩展的算法。 特别是,PI将侧重于两种方法的发展:(一)多模式扩散框架,用于从时空数据中无监督地预测异常。在这里,多模态是指数据可能具有不同的模态,例如文本、图像、地理位置等。(ii)基于上述多模态扩散框架和专门设计用于操作时空数据的深度卷积网络的新变体,对图结构数据进行半监督学习的可扩展框架。 该项目的预期成功是基于研究人员在开发先进的数学概念并将其转化为现实世界应用方面的现有成就。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
When do birds of a feather flock together? k-Means, proximity, and conic programming
- DOI:10.1007/s10107-018-1333-x
- 发表时间:2017-10
- 期刊:
- 影响因子:2.7
- 作者:Xiaodong Li;Yang Li;Shuyang Ling;T. Strohmer;Ke Wei
- 通讯作者:Xiaodong Li;Yang Li;Shuyang Ling;T. Strohmer;Ke Wei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Strohmer其他文献
Auto-Calibration and Biconvex Compressive Sensing with Applications to Parallel MRI
自动校准和双凸压缩传感在并行 MRI 中的应用
- DOI:
10.48550/arxiv.2401.10400 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yuan Ni;Thomas Strohmer - 通讯作者:
Thomas Strohmer
Optimal OFDM pulse and lattice design for doubly dispersive channels
双色散信道的最优 OFDM 脉冲和点阵设计
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Scott Beaver;Thomas Strohmer - 通讯作者:
Thomas Strohmer
Strong consistency, graph Laplacians, and the stochastic block model
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Shaofeng Deng;Shuyang Ling;Thomas Strohmer - 通讯作者:
Thomas Strohmer
Thomas Strohmer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Strohmer', 18)}}的其他基金
Collaborative Research: Algorithms, Theory, and Validation of Deep Graph Learning with Limited Supervision: A Continuous Perspective
协作研究:有限监督下的深度图学习的算法、理论和验证:连续的视角
- 批准号:
2208356 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
ATD: A Mathematical Framework for Generating Synthetic Data
ATD:生成综合数据的数学框架
- 批准号:
2027248 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Harmonic analysis, non-convex optimization, and large data sets
调和分析、非凸优化和大数据集
- 批准号:
1620455 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Methods and Algorithms from Harmonic Analysis for Threat Detection
用于威胁检测的谐波分析方法和算法
- 批准号:
1322393 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Methods of Harmonic Analysis for Threat Detection
威胁检测的谐波分析方法
- 批准号:
1042939 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Computational Harmonic Analysis in Information Theory, Signal Processing, and Data Analysis
信息论、信号处理和数据分析中的计算谐波分析
- 批准号:
0811169 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Computational Noncommutative Harmonic Analysis with Applications
计算非交换谐波分析及其应用
- 批准号:
0511461 - 财政年份:2005
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Applied Harmonic Analysis and Wireless Communications
应用谐波分析和无线通信
- 批准号:
0208568 - 财政年份:2002
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Numerical Methods for Digital Signal Reconstruction
数字信号重建的数值方法
- 批准号:
9973373 - 财政年份:1999
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
M2DESCO - Computational Multimode Modelling Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings
M2DESCO - 计算多模式建模支持安全设计
- 批准号:
10096988 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
EU-Funded
Development of multimode vacuum ionization for use in medical diagnostics
开发用于医疗诊断的多模式真空电离
- 批准号:
10697560 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
ERI: Study of quantum entanglement and spatially different photon pair generation through intermodal four-wave mixing in few-mode and multimode fibers
ERI:通过少模和多模光纤中的模间四波混频研究量子纠缠和空间不同的光子对生成
- 批准号:
2301870 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
I-Corps: Non-invasive, multimode, hand-held technology for wound assessment
I-Corps:用于伤口评估的非侵入性、多模式、手持式技术
- 批准号:
2223456 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Single Fiber Reflectometry using a Wideband Multimode Circulator
使用宽带多模循环器进行单光纤反射测量
- 批准号:
572442-2022 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
University Undergraduate Student Research Awards
A Multimode Plate Reader System for Discovery and Innovation in Life Sciences Research
用于生命科学研究发现和创新的多模式读板机系统
- 批准号:
RTI-2023-00469 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Research Tools and Instruments
ExpandQISE Track 1: Quantum information exchange over spatially-multimode and multi-core optical fibers
ExpandQISE Track 1:通过空间多模和多芯光纤进行量子信息交换
- 批准号:
2231388 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Multimode Continuous-Variable Quantum Optics for Precision Sensing
用于精密传感的多模连续可变量子光学器件
- 批准号:
2207767 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Temporal Multimode Transformations for Quantum Information Science
量子信息科学的时态多模变换
- 批准号:
2112900 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant