Collaborative Research: Algorithms, Theory, and Validation of Deep Graph Learning with Limited Supervision: A Continuous Perspective

协作研究:有限监督下的深度图学习的算法、理论和验证:连续的视角

基本信息

  • 批准号:
    2208356
  • 负责人:
  • 金额:
    $ 28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Graph-structured data is ubiquitous in scientific and artificial intelligence applications, for instance, particle physics, computational chemistry, drug discovery, neural science, recommender systems, robotics, social networks, and knowledge graphs. Graph neural networks (GNNs) have achieved tremendous success in a broad class of graph learning tasks, including graph node classification, graph edge prediction, and graph generation. Nevertheless, there are several bottlenecks of GNNs: 1) In contrast to many deep networks such as convolutional neural networks, it has been noticed that increasing the depth of GNNs results in a severe accuracy degradation, which has been interpreted as over-smoothing in the machine learning community. 2) The performance of GNNs relies heavily on a sufficient number of labeled graph nodes; the prediction of GNNs will become significantly less reliable when less labeled data is available. This research aims to address these challenges by developing new mathematical understanding of GNNs and theoretically-principled algorithms for graph deep learning with less training data. The project will train graduate students and postdoctoral associates through involvement in the research. The project will also integrate the research into teaching to advance data science education.This project aims to develop next-generation continuous-depth GNNs leveraging computational mathematics tools and insights and to advance data-driven scientific simulation using the new GNNs. This project has three interconnected thrusts that revolve around pushing the envelope of theory and practice in graph deep learning with limited supervision using PDE and harmonic analysis tools: 1) developing a new generation of diffusion-based GNNs that are certifiable to learning with deep architectures and less training data; 2) developing a new efficient attention-based approach for learning graph structures from the underlying data accompanied by uncertainty quantification; and 3) application validation in learning-assisted scientific simulation and multi-modal learning and software development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图结构数据在科学和人工智能应用中无处不在,例如粒子物理学、计算化学、药物发现、神经科学、推荐系统、机器人技术、社交网络和知识图。图神经网络(GNN)在广泛的图学习任务中取得了巨大的成功,包括图节点分类,图边缘预测和图生成。尽管如此,GNN仍存在几个瓶颈:1)与许多深度网络(如卷积神经网络)相比,人们注意到,增加GNN的深度会导致严重的准确性下降,这在机器学习社区中被解释为过度平滑。2)GNN的性能在很大程度上依赖于足够数量的标记图节点;当可用的标记数据较少时,GNN的预测将变得不那么可靠。这项研究旨在通过开发对GNN的新的数学理解和理论上的算法来解决这些挑战,以便在训练数据较少的情况下进行图深度学习。该项目将通过参与研究来培训研究生和博士后助理。该项目还将把研究融入教学,以推进数据科学教育。该项目旨在利用计算数学工具和见解开发下一代连续深度GNN,并使用新GNN推进数据驱动的科学模拟。该项目有三个相互关联的目标,围绕着使用PDE和谐波分析工具在有限监督下推动图深度学习的理论和实践:1)开发新一代基于扩散的GNN,这些GNN可通过深度架构和更少的训练数据进行学习; 2)开发一种新的有效的基于注意力的方法,用于从伴随着不确定性量化的底层数据中学习图结构;以及3)在学习辅助科学模拟和多模式学习以及软件开发中的应用验证。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Strohmer其他文献

Auto-Calibration and Biconvex Compressive Sensing with Applications to Parallel MRI
自动校准和双凸压缩传感在并行 MRI 中的应用
  • DOI:
    10.48550/arxiv.2401.10400
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuan Ni;Thomas Strohmer
  • 通讯作者:
    Thomas Strohmer
Optimal OFDM pulse and lattice design for doubly dispersive channels
双色散信道的最优 OFDM 脉冲和点阵设计
Strong consistency, graph Laplacians, and the stochastic block model

Thomas Strohmer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Strohmer', 18)}}的其他基金

ATD: A Mathematical Framework for Generating Synthetic Data
ATD:生成综合数据的数学框架
  • 批准号:
    2027248
  • 财政年份:
    2020
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
ATD: Multimode Machine Learning and Deep GeoNetworks for Anomaly Detection
ATD:用于异常检测的多模式机器学习和深度地理网络
  • 批准号:
    1737943
  • 财政年份:
    2017
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Harmonic analysis, non-convex optimization, and large data sets
调和分析、非凸优化和大数据集
  • 批准号:
    1620455
  • 财政年份:
    2016
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Methods and Algorithms from Harmonic Analysis for Threat Detection
用于威胁检测的谐波分析方法和算法
  • 批准号:
    1322393
  • 财政年份:
    2013
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Methods of Harmonic Analysis for Threat Detection
威胁检测的谐波分析方法
  • 批准号:
    1042939
  • 财政年份:
    2010
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Computational Harmonic Analysis in Information Theory, Signal Processing, and Data Analysis
信息论、信号处理和数据分析中的计算谐波分析
  • 批准号:
    0811169
  • 财政年份:
    2008
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Computational Noncommutative Harmonic Analysis with Applications
计算非交换谐波分析及其应用
  • 批准号:
    0511461
  • 财政年份:
    2005
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Applied Harmonic Analysis and Wireless Communications
应用谐波分析和无线通信
  • 批准号:
    0208568
  • 财政年份:
    2002
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Numerical Methods for Digital Signal Reconstruction
数字信号重建的数值方法
  • 批准号:
    9973373
  • 财政年份:
    1999
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347322
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347321
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Adventures in Flatland: Algorithms for Modern Memories
合作研究:AF:媒介:平地历险记:现代记忆算法
  • 批准号:
    2423105
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
  • 批准号:
    2312872
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: SLES: Safe Distributional-Reinforcement Learning-Enabled Systems: Theories, Algorithms, and Experiments
协作研究:SLES:安全的分布式强化学习系统:理论、算法和实验
  • 批准号:
    2331781
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
  • 批准号:
    2306438
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了