ATD: A Mathematical Framework for Generating Synthetic Data
ATD:生成综合数据的数学框架
基本信息
- 批准号:2027248
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Progress in threat detection research is greatly hindered by the fact that many data sets related to areas of national security cannot be shared with experts in academia or industry due to security clearance barriers. The limited access to meaningful data sets prevents many researchers from contributing their expertise in algorithm development and verification. This research effort is poised to solve this important problem by developing a rigorous mathematical framework for the faithful and privacy-preserving generation of synthetic data. The goal is to create an as-realistic-as-possible dataset, one that not only maintains the nuances of the original data, but does so without endangering important pieces of sensible information. The results of this project will play a key role in advancing research in threat detection and many other fields where privacy is key. Strong expectation for success of this project is based on solid theoretical achievements by the investigators in high-dimensional probability, signal processing, and mathematical data science, as well as their expertise in turning advanced mathematical concepts into real-world applications in the areas of artificial intelligence, signal processing, medical diagnostics, threat detection, and communications engineering. This research effort is a fusion of several areas of cutting edge mathematics with state-of-the-art artificial intelligence. It seeks to bring advanced techniques from optimization, probability, and machine learning to data science in form of robust and efficient computational methods. Theoretical deliverables are expected to be in the form of new mathematical concepts for the development of multimodal scalable synthetic data. Computational deliverables will be in the form of numerical algorithms for privacy-protecting artificial intelligence. Beyond the project's broad technological impact, it will serve as a model for the kind of cross-disciplinary activity critical for research and education at the frontier of mathematics and data science. The payoffs for society at large are many, including increased privacy protection while maintaining the benefits of data-driven discovery. The users of synthetic data will include researchers in the national security sector, computer scientists, privacy experts, health administrators, medical information system developers, epidemiologists, oncologists and health economists.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
威胁检测研究的进展受到以下事实的极大阻碍:由于安全许可障碍,许多与国家安全领域相关的数据集无法与学术界或工业界的专家共享。对有意义的数据集的有限访问阻止了许多研究人员在算法开发和验证方面贡献他们的专业知识。 这项研究工作准备通过开发一个严格的数学框架来解决这一重要问题,以忠实和保护隐私的方式生成合成数据。 我们的目标是创建一个尽可能真实的数据集,不仅保持原始数据的细微差别,而且不会危及重要的敏感信息。 该项目的成果将在推进威胁检测和许多其他隐私至关重要的领域的研究方面发挥关键作用。对该项目成功的强烈期望是基于研究人员在高维概率、信号处理和数学数据科学方面的坚实理论成就,以及他们在将先进数学概念转化为人工智能、信号处理、医疗诊断、威胁检测和通信工程领域的实际应用方面的专业知识。 这项研究工作是尖端数学的几个领域与最先进的人工智能的融合。它旨在将优化,概率和机器学习等先进技术以强大而有效的计算方法的形式引入数据科学。预计理论成果将以新的数学概念的形式出现,用于开发多模式可扩展的合成数据。 计算交付物将以保护隐私的人工智能的数值算法的形式出现。除了该项目广泛的技术影响外,它还将成为数学和数据科学前沿研究和教育的关键跨学科活动的典范。对整个社会的回报是多方面的,包括增加隐私保护,同时保持数据驱动发现的好处。合成数据的用户将包括国家安全部门的研究人员、计算机科学家、隐私专家、卫生管理人员、医疗信息系统开发人员、流行病学家、肿瘤学家和卫生经济学家。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GRAND++: Graph Neural Diffusion with A Source Term
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Matthew Thorpe;T. Nguyen;Hedi Xia;T. Strohmer;A. Bertozzi;S. Osher;Bao Wang
- 通讯作者:Matthew Thorpe;T. Nguyen;Hedi Xia;T. Strohmer;A. Bertozzi;S. Osher;Bao Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Strohmer其他文献
Auto-Calibration and Biconvex Compressive Sensing with Applications to Parallel MRI
自动校准和双凸压缩传感在并行 MRI 中的应用
- DOI:
10.48550/arxiv.2401.10400 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yuan Ni;Thomas Strohmer - 通讯作者:
Thomas Strohmer
Optimal OFDM pulse and lattice design for doubly dispersive channels
双色散信道的最优 OFDM 脉冲和点阵设计
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Scott Beaver;Thomas Strohmer - 通讯作者:
Thomas Strohmer
Strong consistency, graph Laplacians, and the stochastic block model
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Shaofeng Deng;Shuyang Ling;Thomas Strohmer - 通讯作者:
Thomas Strohmer
Thomas Strohmer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Strohmer', 18)}}的其他基金
Collaborative Research: Algorithms, Theory, and Validation of Deep Graph Learning with Limited Supervision: A Continuous Perspective
协作研究:有限监督下的深度图学习的算法、理论和验证:连续的视角
- 批准号:
2208356 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
ATD: Multimode Machine Learning and Deep GeoNetworks for Anomaly Detection
ATD:用于异常检测的多模式机器学习和深度地理网络
- 批准号:
1737943 - 财政年份:2017
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Harmonic analysis, non-convex optimization, and large data sets
调和分析、非凸优化和大数据集
- 批准号:
1620455 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Methods and Algorithms from Harmonic Analysis for Threat Detection
用于威胁检测的谐波分析方法和算法
- 批准号:
1322393 - 财政年份:2013
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Methods of Harmonic Analysis for Threat Detection
威胁检测的谐波分析方法
- 批准号:
1042939 - 财政年份:2010
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Computational Harmonic Analysis in Information Theory, Signal Processing, and Data Analysis
信息论、信号处理和数据分析中的计算谐波分析
- 批准号:
0811169 - 财政年份:2008
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Computational Noncommutative Harmonic Analysis with Applications
计算非交换谐波分析及其应用
- 批准号:
0511461 - 财政年份:2005
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Applied Harmonic Analysis and Wireless Communications
应用谐波分析和无线通信
- 批准号:
0208568 - 财政年份:2002
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Numerical Methods for Digital Signal Reconstruction
数字信号重建的数值方法
- 批准号:
9973373 - 财政年份:1999
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似海外基金
Mathematical framework for novel non-porous viscous fingering instabilities
新型无孔粘性指法不稳定性的数学框架
- 批准号:
EP/Y021959/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant
A new mathematical and philosophical framework of causation
因果关系的新数学和哲学框架
- 批准号:
23H00599 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Data-Driven Scheduling of Orthopaedic Surgical Services: An End-to-End Framework with Machine Learning and Mathematical Optimization
数据驱动的骨科手术服务调度:具有机器学习和数学优化的端到端框架
- 批准号:
490488 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Operating Grants
Building the framework of controlling a pandemic based on mathematical epidemiology and evolutionary game theory
基于数学流行病学和进化博弈论构建疫情控制框架
- 批准号:
22KF0303 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Dynamical Sampling on Graphs: Mathematical Framework and Algorithms
协作研究:图动态采样:数学框架和算法
- 批准号:
2208031 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Dynamical Sampling on Graphs: Mathematical Framework and Algorithms
协作研究:图动态采样:数学框架和算法
- 批准号:
2208030 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
MRC Transition Support: A mathematical modelling framework for tuberculosis burden estimation and economic evaluation of pharmaceutical interventions.
MRC 过渡支持:用于结核病负担估计和药物干预经济评估的数学模型框架。
- 批准号:
MR/W029227/1 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Fellowship
Towards an immuno-epidemiological framework: The trade-off between biological detail and mathematical complexity
迈向免疫流行病学框架:生物学细节和数学复杂性之间的权衡
- 批准号:
RGPIN-2018-05862 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
A Framework for Model Development and Mathematical Evaluation of Vaccination
疫苗接种模型开发和数学评估框架
- 批准号:
RGPIN-2018-05906 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Objectives matter: A mathematical modelling framework to identify optimal control strategies for future infectious disease outbreaks
目标很重要:数学模型框架可确定未来传染病爆发的最佳控制策略
- 批准号:
2737654 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Studentship














{{item.name}}会员




