Computational Noncommutative Harmonic Analysis with Applications
计算非交换谐波分析及其应用
基本信息
- 批准号:0511461
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The increasing requirements on data rate and quality of service for wireless communications systems call for new techniques to improve radio link reliability and to increase spectral efficiency. The three key technologies to achieve these goals are equalization, diversity, and channel coding. Mathematics is of fundamental importance to these technologies providing the theoretical basis as well as the means for efficient numerical implementations. The investigator will derive a theoretical and numerical framework for designing equalization techniques for time-varying channels. Using methods from pseudo-differential operator theory and time-frequency analysis he will develop a qualitative and quantitative theory for the approximate diagonalization of operators associated with time-varying systems. These theoretical results will form a key stone in the construction of fast and reliable numerical equalization methods which will be based Krylov subspace techniques. The investigator will also study the use of frame theory in wireless communications. Using concepts from sphere packings and group theory he will analyze theoretical properties of special frames such as Grassmannian frames. Furthermore he will develop theoretical and numerical schemes in connection with multi-carrier communication systems such as OFDM. This includes the design of transmission signals with specific properties using a generalization of the concept of prolate spheroidal wave functions. By taking recent tools from harmonic analysis into the wireless communications community this research activity will enable further advances and breakthroughs in wireless communications. At the same time it will stimulate new research areas in applied mathematics and pave the road for further interactions between applied mathematicians and communication engineers.The goal of this project is to develop mathematical concepts and computational methods for wireless communications technology. The investigator will combine modern tools from mathematics with methods from information theory and signal processing to develop new concepts and algorithms for key technologies in wireless communications such as coding, transmission, and equalization. Mathematics is of fundamental importance to these technologies, since it provides the theoretical basis as well as the means for efficient numerical implementations. By improving radio link reliability and increasing data rates this research activity will be instrumental in fulfilling the increasing requirements on future wireless communications systems. The project will produce conceptual deliverables in the form of new mathematical methods to analyze and construct wireless transmission systems. The project will also produce concrete deliverables in the form of numerical algorithms for use in the scientific and industrial sector.
对无线通信系统的数据速率和服务质量的日益增长的要求要求新的技术来改善无线电链路可靠性和增加频谱效率。实现这些目标的三个关键技术是均衡、分集和信道编码。数学是这些技术提供的理论基础,以及有效的数值实现手段的根本重要性。研究人员将推导出一个理论和数值框架,用于设计时变信道的均衡技术。利用伪微分算子理论和时频分析的方法,他将开发一个定性和定量的理论,用于与时变系统相关的算子的近似对角化。这些理论结果将为构造基于Krylov子空间技术的快速可靠的数字均衡方法奠定基础。研究人员还将研究在无线通信中使用框架理论。使用的概念,从球包装和群论,他将分析理论性质的特殊框架,如格拉斯曼框架。此外,他还将开发与多载波通信系统(如OFDM)相关的理论和数值方案。这包括使用长椭球波函数的概念的推广的具有特定属性的传输信号的设计。通过将谐波分析的最新工具引入无线通信领域,这项研究活动将使无线通信领域取得进一步的进步和突破。 同时,它将刺激应用数学的新研究领域,并为应用数学家和通信工程师之间的进一步互动铺平道路。本项目的目标是为无线通信技术发展数学概念和计算方法。研究人员将结合联合收割机现代工具,从数学与信息理论和信号处理的方法,开发新的概念和算法的关键技术,在无线通信,如编码,传输和均衡。数学对这些技术至关重要,因为它提供了理论基础以及有效的数值实现方法。通过提高无线电链路的可靠性和增加数据速率,这项研究活动将有助于满足未来无线通信系统日益增长的需求。 该项目将以新的数学方法的形式产生概念交付物,以分析和构建无线传输系统。该项目还将以数值算法的形式产生具体的可交付成果,供科学和工业部门使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Strohmer其他文献
Auto-Calibration and Biconvex Compressive Sensing with Applications to Parallel MRI
自动校准和双凸压缩传感在并行 MRI 中的应用
- DOI:
10.48550/arxiv.2401.10400 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yuan Ni;Thomas Strohmer - 通讯作者:
Thomas Strohmer
Optimal OFDM pulse and lattice design for doubly dispersive channels
双色散信道的最优 OFDM 脉冲和点阵设计
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Scott Beaver;Thomas Strohmer - 通讯作者:
Thomas Strohmer
Strong consistency, graph Laplacians, and the stochastic block model
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Shaofeng Deng;Shuyang Ling;Thomas Strohmer - 通讯作者:
Thomas Strohmer
Thomas Strohmer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Strohmer', 18)}}的其他基金
Collaborative Research: Algorithms, Theory, and Validation of Deep Graph Learning with Limited Supervision: A Continuous Perspective
协作研究:有限监督下的深度图学习的算法、理论和验证:连续的视角
- 批准号:
2208356 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
ATD: A Mathematical Framework for Generating Synthetic Data
ATD:生成综合数据的数学框架
- 批准号:
2027248 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
ATD: Multimode Machine Learning and Deep GeoNetworks for Anomaly Detection
ATD:用于异常检测的多模式机器学习和深度地理网络
- 批准号:
1737943 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Harmonic analysis, non-convex optimization, and large data sets
调和分析、非凸优化和大数据集
- 批准号:
1620455 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Methods and Algorithms from Harmonic Analysis for Threat Detection
用于威胁检测的谐波分析方法和算法
- 批准号:
1322393 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
Methods of Harmonic Analysis for Threat Detection
威胁检测的谐波分析方法
- 批准号:
1042939 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Computational Harmonic Analysis in Information Theory, Signal Processing, and Data Analysis
信息论、信号处理和数据分析中的计算谐波分析
- 批准号:
0811169 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
Applied Harmonic Analysis and Wireless Communications
应用谐波分析和无线通信
- 批准号:
0208568 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
Numerical Methods for Digital Signal Reconstruction
数字信号重建的数值方法
- 批准号:
9973373 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Conference: Noncommutative Geometry and Analysis
会议:非交换几何与分析
- 批准号:
2350508 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
- 批准号:
23K03064 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Model theory of operators and noncommutative function theory
算子模型论和非交换函数论
- 批准号:
23KJ1070 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
LEAPS-MPS: Noncommutative Geometry and Topology of Quantum Metrics
LEAPS-MPS:量子度量的非交换几何和拓扑
- 批准号:
2316892 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
- 批准号:
2302447 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Analysis of noncommutative rational functions in terms of free probability
用自由概率分析非交换有理函数
- 批准号:
22KJ1817 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Topics in noncommutative algebra 2022: homological regularities
2022 年非交换代数专题:同调正则
- 批准号:
2302087 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Noncommutative analysis for self-similar structure
自相似结构的非交换分析
- 批准号:
DP220101631 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Projects
Noncommutative statistical mechanics: probability at the confluence
非交换统计力学:汇合处的概率
- 批准号:
EP/V048902/2 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual